OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 18 — Sep. 15, 2013
  • pp: 3620–3622

Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber

H. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta  »View Author Affiliations

Optics Letters, Vol. 38, Issue 18, pp. 3620-3622 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel concept is introduced that utilizes the scattering properties of zinc oxide nanorods to control light guidance and leakage inside optical fibers coated with nanorods. The effect of the hydrothermal growth conditions of the nanorods on light scattering and coupling to optical fiber are experimentally investigated. At optimum conditions, 5% of the incident light is side coupled to the cladding modes. This coupling scheme could be used in different applications such as distributed sensors and light combing. Implementation of the nanorods on fiber provides low cost and controllable nonlithography-based solutions for free space to fiber coupling. Higher coupling efficiencies can be achieved with further optimization.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 20, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: August 19, 2013
Published: September 10, 2013

H. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, "Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber," Opt. Lett. 38, 3620-3622 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Chen, X. W. Sun, C. X. Xu, and B. K. Tay, Phys. E 21, 103 (2004). [CrossRef]
  2. A. Thankappan, M. Hari, S. Mathew, S. A. Joseph, and V. P. N. Nampoori, in Optics: Phenomena, Materials, Devices, and Characterization: Optics 2011: International Conference on Light, AIP Conference Proceedings (AIP, 2011), Vol. 1391, pp. 514–517.
  3. R. Tena-Zaera, J. Elias, and C. Lévy-Clément, Appl. Phys. Lett. 93, 233119 (2008). [CrossRef]
  4. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, Nano Lett. 7, 3675 (2007). [CrossRef]
  5. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, Opt. Express 20, 8472 (2012). [CrossRef]
  6. A. O. Dikovskaa, P. A. Atanasova, A. Ts. Andreevb, B. S. Zafirovab, E. I. Karakolevab, and T. R. Stoyanchova, Appl. Surf. Sci. 254, 1087 (2007). [CrossRef]
  7. A. Og. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. Ts. Andreev, Sens. Actuators B 146, 331 (2010). [CrossRef]
  8. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, Opt. Express 20, 19404 (2012). [CrossRef]
  9. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009). [CrossRef]
  10. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).
  11. A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, J. Sol-Gel Sci. Technol. 39, 49 (2006). [CrossRef]
  12. S. Baruah and J. Dutta, J. Sol-Gel Sci. Technol. 50, 456 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited