OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 2 — Jan. 15, 2013
  • pp: 199–201

Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method

Lun Ge, Weihong Hua, Hongyan Wang, Zining Yang, and Xiaojun Xu  »View Author Affiliations

Optics Letters, Vol. 38, Issue 2, pp. 199-201 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the optogalvanic method to calculate the concentration of rubidium ions produced by photoionization in a Rb diode-pumped alkali laser gain medium. With bias voltage added across the electrodes of a rubidium hollow cathode lamp, the measured optogalvanic current is 2.3×107A. Further study shows that the rubidium ion concentration is proportional to the pump intensity, and the drift velocity of rubidium ions is proportional to the bias voltage. When the photoionization process reaches dynamic equilibrium, the rubidium ion concentration will not increase with growing rubidium atom density. The calculated rubidium ion concentration is 1.5×105106 according to the experiment, and the ionization degree is less than 2.4×107.

© 2013 Optical Society of America

OCIS Codes
(260.5210) Physical optics : Photoionization
(300.6440) Spectroscopy : Spectroscopy, optogalvanic

ToC Category:

Original Manuscript: November 2, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: December 12, 2012
Published: January 11, 2013

Lun Ge, Weihong Hua, Hongyan Wang, Zining Yang, and Xiaojun Xu, "Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method," Opt. Lett. 38, 199-201 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010). [CrossRef]
  2. M. Rodriguez, “Go with the flow: novel diode-pumped alkali laser achieves first light,” http://www.wpafb.af.mil/news/story.asp?id=123212683 .
  3. A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).
  4. W. F. Krupke, Proc. SPIE 7005, 700521 (2008). [CrossRef]
  5. D. L. Carroll, in 42nd AIAA Plasmadynamics and Laser Conference (American Institute of Aeronautics and Astronautics, 2011), paper 3102.
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011). [CrossRef]
  7. Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005). [CrossRef]
  8. J. P. Hermann and J. J. Wynne, Opt. Lett. 5, 236 (1980). [CrossRef]
  9. L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987). [CrossRef]
  10. M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006). [CrossRef]
  11. X. Xu and D.-C. Zhu, The Gas Discharge Physics (Fudan University, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited