OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 2 — Jan. 15, 2013
  • pp: 94–96

Higher-order defect-mode laser in an optically thick photonic crystal slab

Se-Heon Kim, Jingqing Huang, and Axel Scherer  »View Author Affiliations


Optics Letters, Vol. 38, Issue 2, pp. 94-96 (2013)
http://dx.doi.org/10.1364/OL.38.000094


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of an optically thick slab may provide versatile solutions for the realization of a current injection-type laser using photonic crystals. Here, we show that a transversely higher-order defect mode can be designed to be confined by a photonic bandgap in such a thick slab. Using simulations, we show that a high Q of > 10 5 is possible from a finely tuned second-order hexapole mode (2h). Experimentally, we achieve optically pumped pulsed lasing at 1347 nm from the 2h with a peak threshold pump power of 88 μW.

© 2013 Optical Society of America

OCIS Codes
(230.5298) Optical devices : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optical Devices

History
Original Manuscript: October 26, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: December 3, 2012
Published: January 7, 2013

Citation
Se-Heon Kim, Jingqing Huang, and Axel Scherer, "Higher-order defect-mode laser in an optically thick photonic crystal slab," Opt. Lett. 38, 94-96 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-2-94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999). [CrossRef]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004). [CrossRef]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011). [CrossRef]
  4. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, Opt. Express 20, 3773 (2012). [CrossRef]
  5. S.-H. Kim, J. Huang, and A. Scherer, Opt. Lett. 37, 488 (2012). [CrossRef]
  6. S. Johnson and J. Joannopoulos, Opt. Express 8, 173 (2001). [CrossRef]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  8. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002). [CrossRef]
  9. S.-H. Kim, A. Homyk, S. Walavalkar, and A. Scherer, “High-Q impurity photon states bounded by a photonic-band-pseudogap in an optically-thick photonic-crystal slab,” http://arxiv.org/abs/1209.5726 .
  10. S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited