OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 24 — Dec. 15, 2013
  • pp: 5410–5413

Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators

Yuancheng Fan, Zeyong Wei, Zhengren Zhang, and Hongqiang Li  »View Author Affiliations

Optics Letters, Vol. 38, Issue 24, pp. 5410-5413 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical extinction and absorption enhancement in the infrared range of a monolayer graphene sheet by patterning split ring resonators (SRRs) is studied. It is found that the electric mode is stronger in enhancing infrared extinction and absorption compared to the magnetic mode and other higher-order modes. We improve the infrared extinction of the SRR graphene sheet by increasing the graphene area ratio in the SRR unit cell design. With the increase of the graphene area ratio, the radiation ability of the electric dipolar mode and dissipation of graphene compete for a maximum infrared absorption of about 50%. The findings on enhancing infrared extinction and absorption of the graphene sheet by harvesting the electric dipolar mode may have potential applications in terahertz and infrared detection and modulation for graphene photonics and optoelectronics.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(290.2200) Scattering : Extinction
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 17, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: November 13, 2013
Published: December 11, 2013

Yuancheng Fan, Zeyong Wei, Zhengren Zhang, and Hongqiang Li, "Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators," Opt. Lett. 38, 5410-5413 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). [CrossRef]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010). [CrossRef]
  3. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012). [CrossRef]
  4. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007). [CrossRef]
  5. M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009). [CrossRef]
  6. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Lett. 11, 3370 (2011). [CrossRef]
  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008). [CrossRef]
  9. E. Yablonovitch, Sci. Am. 285, 47 (2001). [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  11. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). [CrossRef]
  12. Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401 (2007). [CrossRef]
  13. Z. Zhang, H. Li, Z. Gong, Y. Fan, T. Zhang, and H. Chen, Appl. Phys. Lett. 101, 252104 (2012). [CrossRef]
  14. N. Engheta, Science 317, 1698 (2007). [CrossRef]
  15. Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, Appl. Phys. Lett. 98, 151903 (2011). [CrossRef]
  16. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004). [CrossRef]
  17. C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).
  18. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, Nat. Mater. 11, 573 (2012). [CrossRef]
  19. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012). [CrossRef]
  20. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, Phys. Rev. Lett. 108, 047401 (2012). [CrossRef]
  21. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006). [CrossRef]
  22. E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007). [CrossRef]
  23. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys. Condens. Matter 19, 026222 (2007). [CrossRef]
  24. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008). [CrossRef]
  25. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008). [CrossRef]
  26. J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Phys. Rev. B 83, 165113 (2011). [CrossRef]
  27. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature 487, 77 (2012).
  28. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012).
  29. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  30. I. A. I. Al-Naib, C. Jansen, and M. Koch, Appl. Phys. Lett. 94, 153505 (2009). [CrossRef]
  31. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, Phys. Rev. B 87, 115417 (2013). [CrossRef]
  32. P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011). [CrossRef]
  33. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Nat. Mater. 11, 936 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited