OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 3 — Feb. 1, 2013
  • pp: 335–337

Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown

Yi Liu, Shiliang Qu, and Yan Li  »View Author Affiliations

Optics Letters, Vol. 38, Issue 3, pp. 335-337 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single microchannel high-temperature fiber sensors were fabricated by drilling a microchannel across the fiber core near the end of the common single-mode fiber using femtosecond laser-induced water breakdown. Then the microchannel was annealed by the arc discharge to smooth its inwall. The two sides of microchannel and the end surface of the fiber constitute three reflective mirrors, which form a three-wave Fabry–Pérot interferometer (FPI). The fabricated FPI can be used as a high-temperature sensor in harsh environments due to its large temperature range (up to 1000°C), high linearity, miniaturized size, and perfect mechanical property.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.4000) Optical devices : Microstructure fabrication
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 4, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 3, 2013
Published: January 28, 2013

Yi Liu, Shiliang Qu, and Yan Li, "Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown," Opt. Lett. 38, 335-337 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008). [CrossRef]
  2. B. W. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007). [CrossRef]
  3. D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006). [CrossRef]
  4. Y. Z. Zhu, Z. Y. Huang, F. B. Shen, and A. B. Wang, Opt. Lett. 30, 711 (2005). [CrossRef]
  5. W. H. Tsai and C. J. Lin, J. Lightwave Technol. 19, 682 (2001). [CrossRef]
  6. T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010). [CrossRef]
  7. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Opt. Express 18, 14245 (2010). [CrossRef]
  8. A. B. Wang, S. Gollapudi, K. A. Murphy, R. G. May, and R. O. Claus, Opt. Lett. 17, 1021 (1992). [CrossRef]
  9. D. H. Wang, S. J. Wang, and P. G. Jia, Opt. Lett. 37, 2046 (2012). [CrossRef]
  10. D. W. Duan, Y. J. Rao, and T. Zhu, J. Opt. Soc. Am. B 29, 912 (2012). [CrossRef]
  11. C. R. Liao, T. Y. Hu, and D. N. Wang, Opt. Express 20, 22813 (2012). [CrossRef]
  12. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007). [CrossRef]
  13. X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, and A. B. Wang, Appl. Opt. 45, 7760 (2006). [CrossRef]
  14. E. Cibula and D. Donlagic, Opt. Express 15, 8719 (2007). [CrossRef]
  15. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008). [CrossRef]
  16. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012). [CrossRef]
  17. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007). [CrossRef]
  18. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, Opt. Lett. 33, 536 (2008). [CrossRef]
  19. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, Opt. Lett. 32, 1575 (2007). [CrossRef]
  20. F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011). [CrossRef]
  21. W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011). [CrossRef]
  22. Y. Li and S. L. Qu, Opt. Lett. 36, 4236 (2011). [CrossRef]
  23. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited