OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 38, Iss. 4 — Feb. 15, 2013
  • pp: 594–596

Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber

Karima Chah, Damien Kinet, Marc Wuilpart, Patrice Mégret, and Christophe Caucheteur  »View Author Affiliations


Optics Letters, Vol. 38, Issue 4, pp. 594-596 (2013)
http://dx.doi.org/10.1364/OL.38.000594


View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report highly birefringent fiber Bragg gratings in standard single-mode optical fiber realized with UV femtosecond pulses and line-by-line inscription. By controlling the three-dimensional positioning of the focused laser beam with respect to the fiber core, we achieve very high birefringence at the grating location in a single exposure. A maximum birefringence value of 7.93×104 has been reached for 10th-order gratings when using 2 μJ pulses, which is to our knowledge the highest birefringence value reported so far. This birefringence results from UV-induced high-densification lines shifted from the center of the core, increasing the asymmetry of the induced-stress lines. With a Bragg wavelength spacing reaching more than 800 pm between polarization modes, such gratings are particularly well suited for selective filtering or, as demonstrated here, for temperature-insensitive transverse-strain measurements.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(230.5440) Optical devices : Polarization-selective devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 19, 2012
Manuscript Accepted: January 18, 2013
Published: February 14, 2013

Citation
Karima Chah, Damien Kinet, Marc Wuilpart, Patrice Mégret, and Christophe Caucheteur, "Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber," Opt. Lett. 38, 594-596 (2013)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-38-4-594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Udd, Proc. SPIE 6770, 677002 (2007). [CrossRef]
  2. C. M. Lawrence, D. V. Nelson, E. Udd, and T. A. Bennett, Exp. Mech. 39, 202 (1999). [CrossRef]
  3. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewskic, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, Opt. Express 18, 15113 (2010). [CrossRef]
  4. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004). [CrossRef]
  5. T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, Opt. Lett. 35, 1647 (2010). [CrossRef]
  6. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, Opt. Express 18, 19844 (2010). [CrossRef]
  7. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, Opt. Express 19, 363 (2011). [CrossRef]
  8. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, Opt. Express 17, 6082 (2009). [CrossRef]
  9. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, Opt. Express 19, 11992 (2011). [CrossRef]
  10. P. Lu, D. Grobnic, and S. J. Mihailov, J. Lightwave Technol. 25, 779 (2007). [CrossRef]
  11. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, IEEE Photon. Technol. Lett. 19, 966 (2007). [CrossRef]
  12. C. Caucheteur, P. Mégret, T. Ernst, and D. N. Nikogosyan, Opt. Commun. 271, 303 (2007). [CrossRef]
  13. K. Zhou, C. Mou, M. Dubov, L. Zhang, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010). [CrossRef]
  14. R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, Opt. Express 20, 13451 (2012). [CrossRef]
  15. C. Florea and K. A. Winick, J. Lightwave Technol. 21, 246 (2003). [CrossRef]
  16. F. Dürr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, Appl. Phys. Lett. 84, 4983 (2004). [CrossRef]
  17. E. Chehura, C.-C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, Smart Mater. Struct. 13, 888 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited