OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 5 — Mar. 1, 2013
  • pp: 688–690

Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser

Linghao Cheng, Jianlei Han, Zhenzhen Guo, Long Jin, and Bai-Ou Guan  »View Author Affiliations

Optics Letters, Vol. 38, Issue 5, pp. 688-690 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarimetric heterodyning fiber grating laser is proposed to sense a magnetic field. When a magnetic field is parallel to the fiber grating laser, a circular birefringence is induced into the laser cavity. An elliptical birefringence results due to the circular birefringence and the intrinsic linear birefringence of the laser cavity. The elliptical birefringence is translated to the beat note frequency between the two orthogonally polarized laser outputs after photodetection. Confirmed by experiment results, it shows that the beat note frequency shift is proportional to the square of the magnetic field magnitude. Because the fiber laser is as short as less than 2 cm, a miniature magnetic field sensor is then demonstrated in principle.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3810) Optical devices : Magneto-optic systems
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 18, 2012
Manuscript Accepted: January 22, 2013
Published: February 25, 2013

Linghao Cheng, Jianlei Han, Zhenzhen Guo, Long Jin, and Bai-Ou Guan, "Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser," Opt. Lett. 38, 688-690 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Lenz, Proc. IEEE 78, 973 (1990). [CrossRef]
  2. M. Yang, J. Dai, C. Zhou, and D. Jiang, Opt. Express 17, 20777 (2009). [CrossRef]
  3. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006). [CrossRef]
  4. B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010). [CrossRef]
  5. A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986). [CrossRef]
  6. L. Sun, S. Jiang, and J. R. Marciante, Opt. Express 18, 5407 (2010). [CrossRef]
  7. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984). [CrossRef]
  8. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, J. Lightwave Technol. 30, 1097 (2012). [CrossRef]
  9. J. S. Park, S. H. Yun, S. J. Ahn, and B. Y. Kim, Opt. Lett. 21, 1029 (1996). [CrossRef]
  10. M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998). [CrossRef]
  11. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979). [CrossRef]
  12. M. J. Freiser, IEEE Trans. Magn. 4, 152 (1968). [CrossRef]
  13. M.-P. Li, L. Jin, and B.-O. Guan, Proc. SPIE 8421, 84211N (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited