OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 1004–1006

Photorefractive holographic moiré-like patterns for secure numerical code generation

G. N. de Oliveira, M. E. Oliveira, and P. A. M. dos Santos  »View Author Affiliations

Optics Letters, Vol. 38, Issue 6, pp. 1004-1006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, low-frequency photorefractive holographic moiré fringe patterns are proposed as secure numerical code generators that could be useful for storage or data transmission. These dynamic moiré patterns are holographically obtained by the superposition of two or more sinusoidal gratings with slightly different pitches. The Bi12TiO20 photorefractive crystal sample is used as holographic medium. An optical numerical base was defined with patterns representing the 0, 1 and 1 digits as bits. Then, the complete set of these optical bits is combined to form bytes, where a numerical sequence is represented. The results show that the proposed numerical code is simple, robust and extremely secure, then could be used efficiently as standard numerical identification in robotic vision or eventually in storage or transmission of secure numerical data.

© 2013 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(210.0210) Optical data storage : Optical data storage

ToC Category:

Original Manuscript: January 9, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 19, 2013
Published: March 15, 2013

G. N. de Oliveira, M. E. Oliveira, and P. A. M. dos Santos, "Photorefractive holographic moiré-like patterns for secure numerical code generation," Opt. Lett. 38, 1004-1006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.-H. Seo and S.-J. Kim, Opt. Lett. 28, 304 (2003). [CrossRef]
  2. J. A. Munõz-Rodrigues and R. Rodrigues-Vera, Opt. Commun. 236, 295 (2004). [CrossRef]
  3. S. K. Kaura, D. P. Chhachhia, and A. K. Aggarwal, J. Opt. A 8, 67 (2006).
  4. S. Liu, X. Zang, and H. Lai, Appl. Opt. 34, 4700 (1995). [CrossRef]
  5. X. Zang, E. Dalsgaard, S. Liu, H. Liu, and J. Chen, Appl. Opt. 36, 8096 (1997). [CrossRef]
  6. A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, Opt. Laser Technol. 38, 117 (2006). [CrossRef]
  7. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979). [CrossRef]
  8. P. A. M. dos Santos, Opt. Commun. 212, 211 (2002). [CrossRef]
  9. P. Yeh, Introduction of Photorefractive Nonlinear Optics (Wiley, 1993).
  10. P. A. M. dos Santos and G. N. de Oliveira, Opt. Eng. 44, 12 (2005).
  11. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2004), p. 14.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited