OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 6 — Mar. 15, 2013
  • pp: 902–904

Fabry–Perot filter using grating structures

Yu-Sheng Lin, Chong Pei Ho, Kah How Koh, and Chengkuo Lee  »View Author Affiliations

Optics Letters, Vol. 38, Issue 6, pp. 902-904 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Grating structures are designed at the inner wall of the Fabry–Perot (FP) resonator to enhance the performance of an FP optical filter. The rectangular grating or triangular grating (TG) structures allows the light to be propagated effectively through the FP resonator. Attributed to the grating structures, the spectrum intensity of a FP resonator with grating structures is calculated to be 4.5-fold higher than that of a FP resonator with slot. In addition, the Q-factor of the resonant peak for a FP resonator with hybrid TG structure and two slots is 9.5-fold and 4.7-fold higher than that of a FP resonator with one slot and TG configurations, respectively.

© 2013 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.1480) Optical devices : Bragg reflectors
(230.5750) Optical devices : Resonators

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 10, 2013
Revised Manuscript: February 5, 2013
Manuscript Accepted: February 8, 2013
Published: March 12, 2013

Yu-Sheng Lin, Chong Pei Ho, Kah How Koh, and Chengkuo Lee, "Fabry–Perot filter using grating structures," Opt. Lett. 38, 902-904 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gat, Proc. SPIE 4056, 50 (2000). [CrossRef]
  2. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, IEEE Photon. Technol. Lett. 16, 506 (2004). [CrossRef]
  3. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Appl. Phys. Lett. 92, 081101 (2008). [CrossRef]
  4. P. Lalanne and J. P. Hugonin, IEEE J. Quantum Electron. 39, 1430 (2003). [CrossRef]
  5. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, Opt. Express 16, 12084 (2008). [CrossRef]
  6. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, IEEE Photon. Technol. Lett. 22, 610 (2010). [CrossRef]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997). [CrossRef]
  8. M. Lipson, IEEE J. Lightwave Technol. 23, 4222 (2005). [CrossRef]
  9. C. G. Bernhard, G. Höglund, and D. Ottoson, J. Insect Physiol. 9, 573 (1963). [CrossRef]
  10. B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, and G.-Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009). [CrossRef]
  11. Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, Appl. Surf. Sci. 258, 2 (2011). [CrossRef]
  12. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 1154 (1993). [CrossRef]
  13. W. H. Southwell, J. Opt. Soc. Am. A 8, 549 (1991). [CrossRef]
  14. J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, IEEE J. Quantum Electron. 46, 1313 (2010). [CrossRef]
  15. C. F. R. Mateus, C. H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002). [CrossRef]
  16. A. Lipson and E. M. Yeatman, Opt. Lett. 31, 395 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited