OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 8 — Apr. 15, 2013
  • pp: 1334–1336

Tailored first- and second-order coherence properties of quantum dot superluminescent diodes via optical feedback

Sébastien Hartmann, Andreas Molitor, Martin Blazek, and Wolfgang Elsäßer  »View Author Affiliations

Optics Letters, Vol. 38, Issue 8, pp. 1334-1336 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally that the first- and second-order coherence properties of light emitted by a quantum dot superluminescent diode can be simultaneously tailored by well-controlled optical feedback. Depending on feedback intensity and feedback spectral range we achieve a spectral width Δλ between 120 and 0.26 nm, corresponding to a coherence length in first order in the range between 13 and 5820 μm, while the central second-order coherence degree g(2)(τ=0) is tuned gradually from a thermal value of g(2)(0)1.8 down to the coherent laser limit of g(2)(0)=1.0. These results are complemented by comprehensive investigations of relative intensity noise, which are in excellent agreement with the observed intensity correlation behavior.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.5290) Coherence and statistical optics : Photon statistics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 7, 2013
Manuscript Accepted: March 15, 2013
Published: April 12, 2013

Sébastien Hartmann, Andreas Molitor, Martin Blazek, and Wolfgang Elsäßer, "Tailored first- and second-order coherence properties of quantum dot superluminescent diodes via optical feedback," Opt. Lett. 38, 1334-1336 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fujimoto and C. R. Acad, Sci. Ser. IV 2, 1099 (2001). [CrossRef]
  2. K. Yi, M. Mujat, B. H. Park, W. Sun, J. W. Miller, J. M. Seddon, L. H. Young, J. F. de Boer, and T. C. Chen, Br. J. Ophtalmol. 93, 176 (2009). [CrossRef]
  3. M. Blazek and W. Elsäßer, IEEE J. Quantum Electron. 48, 1578 (2012). [CrossRef]
  4. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, Adv. Opt. Photon. 2, 201 (2010).
  5. E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge Univ., 1995).
  6. R. Loudon, The Quantum Theory of Light (Oxford Univ., 1983).
  7. M. Blazek and W. Elsäßer, Phys. Rev A 84, 063840 (2011). [CrossRef]
  8. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010). [CrossRef]
  9. B. R. Mollow, Phys. Rev. 175, 1555 (1968). [CrossRef]
  10. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009). [CrossRef]
  11. K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
  12. V. Torres-Company, J. P. Torres, and A. T. Friberg, Phys. Rev. Lett. 109, 243905 (2012). [CrossRef]
  13. H. Hodara, Proc. IEEE 53, 696 (1965). [CrossRef]
  14. P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Kristajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, IEEE J. Quantum Electron. 4, 1015 (2010).
  15. M. Tur, E. Shafir, and K. Blotekjaer, J. Lightwave Technol. 8, 183 (1990). [CrossRef]
  16. M. Blazek, S. Breuer, T. Gensty, W. Elsäßer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resnau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
  17. H. Hofmann and O. Hess, Phys. Rev. A 62, 063807 (2000). [CrossRef]
  18. M. Ahmed, M. Yamada, and S. Abdulrhmann, Fluct. Noise Lett. 1, L163 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited