OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 158–161

Observing abnormally large group velocity at the plasmonic band edge via a universal eigenvalue analysis

Wei E. I. Sha, Ling Ling Meng, Wallace C. H. Choy, and Weng Cho Chew  »View Author Affiliations

Optics Letters, Vol. 39, Issue 1, pp. 158-161 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a novel universal eigenvalue analysis for 2D arbitrary nanostructures comprising dispersive and lossy materials. The complex dispersion relation (or complex Bloch band structure) of a metallic grating is rigorously calculated by the proposed algorithm with the finite-difference implementation. The abnormally large group velocity is observed at a plasmonic band edge with a large attenuation constant. Interestingly, we found the abnormal group velocity is caused by the leaky (radiation) loss, not by metallic absorption (ohmic) loss. The periodically modulated surface of the grating significantly modifies the original dispersion relation of the semi-infinite dielectric-metal structure and induces the extraordinarily large group velocity, which is different from the near-zero group velocity at photonic band edge. The work is fundamentally important to the design of plasmonic nanostructures.

© 2013 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: September 13, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: November 23, 2013
Published: December 24, 2013

Wei E. I. Sha, Ling Ling Meng, Wallace C. H. Choy, and Weng Cho Chew, "Observing abnormally large group velocity at the plasmonic band edge via a universal eigenvalue analysis," Opt. Lett. 39, 158-161 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, AIP Adv. 1, 032151 (2011). [CrossRef]
  3. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, J. Phys. Chem. C 116, 7200 (2012). [CrossRef]
  4. T. Okamoto, F. H’Dhili, and S. Kawata, Appl. Phys. Lett. 85, 3968 (2004). [CrossRef]
  5. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, Nat. Nanotechnol. 8, 506 (2013). [CrossRef]
  6. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, Opt. Express 16, 12469 (2008). [CrossRef]
  7. N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, Opt. Express 20, 1868 (2012). [CrossRef]
  8. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostalek, Opt. Express 20, 14042 (2012). [CrossRef]
  9. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996). [CrossRef]
  10. A. Raman and S. H. Fan, Phys. Rev. Lett. 104, 087401 (2010). [CrossRef]
  11. C. Fietz, Y. Urzhumov, and G. Shvets, Opt. Express 19, 19027 (2011). [CrossRef]
  12. M. Luo and Q. H. Liu, J. Opt. Soc. Am. A 27, 1878 (2010). [CrossRef]
  13. M. Luisier, A. Schenk, W. Fichtner, and G. Klimeck, Phys. Rev. B 74, 205323 (2006). [CrossRef]
  14. C. Li, Y.-S. Zhou, and H.-Yu. Wang, Opt. Express 20, 7726 (2012). [CrossRef]
  15. T. Okamoto and S. Kawata, Opt. Express 20, 5168 (2012). [CrossRef]
  16. R.-L. Chern, C. C. Chang, and C. C. Chang, Phys. Rev. E 73, 036605 (2006). [CrossRef]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998). [CrossRef]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). [CrossRef]
  19. W. C. Chew and W. H. Weedon, Microwave Opt. Technol. Lett. 7, 599 (1994). [CrossRef]
  20. T. Okamoto, J. Simonen, and S. Kawata, Phys. Rev. B 77, 115425 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited