OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 10 — May. 15, 2014
  • pp: 3058–3061

Light extraction from luminescent light sources and application to monolithic ceramic phosphors

Alan Lenef, John F. Kelso, and Alan Piquette  »View Author Affiliations

Optics Letters, Vol. 39, Issue 10, pp. 3058-3061 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extension of a theorem for light extraction [Adv. Opt. Technol. 2, 291 (2013)] from a higher index luminescent body (LED or phosphor) through an extracting surface into a lower index output medium is derived. The result is valid for both geometric and diffractive surface structures. Using this bound and radiation transport calculations, we show that extraction from LEDs or phosphors requires a combination of cavity effects to enhance radiance behind the extracting surface and scattering or diffraction to couple trapped total-internal-reflection modes to propagating modes. The treatment applies to macroscopic luminescent sources whose thickness exceeds the longitudinal coherence length of the luminescent radiation.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(260.3800) Physical optics : Luminescence
(290.4210) Scattering : Multiple scattering
(110.2945) Imaging systems : Illumination design

ToC Category:
Optical Devices

Original Manuscript: March 6, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 11, 2014
Published: May 15, 2014

Alan Lenef, John F. Kelso, and Alan Piquette, "Light extraction from luminescent light sources and application to monolithic ceramic phosphors," Opt. Lett. 39, 3058-3061 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. David, J. Disp. Technol. 9, 301 (2013). [CrossRef]
  2. C. Wiesmann, “Nano-structured LEDs: light extraction mechanisms and applications,” Ph.D. dissertation (Universität Regensburg, 2009).
  3. K. Bergenek, C. Wiesmann, R. Wirth, L. O’Faolain, N. Linder, K. Streubel, and T. F. Krauss, Appl. Phys. Lett. 93, 041105 (2008). [CrossRef]
  4. A. Mao and R. F. Karlicek, Opt. Lett. 38, 2796 (2013). [CrossRef]
  5. K. Y. Ko, Y. K. Lee, J. K. Park, Y. C. Kim, and Y. R. Do, Opt. Express 16, 5689 (2008). [CrossRef]
  6. A. Drezet, F. Przybilla, E. Laux, O. Mahboub, C. Genet, T. W. Ebbesen, J. S. Bouillard, A. V. Zayats, I. S. Spevak, A. V. Kats, A. Yu Nikitin, and L. Martín-Moreno, Appl. Phys. Lett. 95, 021101 (2009). [CrossRef]
  7. R. Joray, “Microcavity light emitting diodes in the visible red and near infrared wavelength range,” Ph.D. dissertation (École Polytechnique Fédérale de Lausanne, 2005).
  8. R. Hu, H. Zheng, J. Hu, and X. Luo, J. Disp. Technol. 9, 447 (2013). [CrossRef]
  9. M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Hermann, ECS J. Solid State Sci. Technol. 2, R3168 (2013).
  10. J. Muschaweck and C. Wiesmann, Adv. Opt. Technol. 2, 291 (2013).
  11. A. Ishimaru, Wave Propagation and Scattering in Random Media, Single Scattering and Transport Theory (Academic, 1978), Vol. 1.
  12. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  13. D. E. Zelmon, D. L. Small, and R. Page, Appl. Opt. 37, 4933 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited