OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4104–4107

Rigorous speckle simulation using surface integral equations and higher order boundary element method

Liwei Fu, Karsten Frenner, and Wolfgang Osten  »View Author Affiliations


Optics Letters, Vol. 39, Issue 14, pp. 4104-4107 (2014)
http://dx.doi.org/10.1364/OL.39.004104


View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of electromagnetic waves from rough surfaces has been actively studied for more than a century now because of its involvement in vast application areas. In the past two decades, great advances have been made by incorporating multiple scattering effects into analytical approaches. However, no model can yet be applied to surfaces with arbitrary roughness. It is also very difficult to study the cross-polarization, shadowing, or multiple scattering effects. In order to study more fundamentally the interaction of polarized light with more general rough surfaces of general media, we have developed a rigorous numerical simulator to calculate the resulting speckle fields. The full Maxwell equations were solved using surface integral equations combined with a boundary element method. The rough surface was discretized by higher order quadrilateral edge elements. The effective tangential electric and magnetic fields in each element in terms of 10 edges were first solved. The scattered electric and magnetic fields everywhere in space were then calculated correspondingly. One of the great advantages of such a simulator is that both the near and far fields can be calculated directly. Preliminary results of different kinds of metallic structures are presented, by which the advantages of the method are demonstrated.

© 2014 Optical Society of America

OCIS Codes
(030.5770) Coherence and statistical optics : Roughness
(030.6140) Coherence and statistical optics : Speckle
(290.5880) Scattering : Scattering, rough surfaces
(290.5855) Scattering : Scattering, polarization

ToC Category:
Scattering

History
Original Manuscript: April 11, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: May 29, 2014
Published: July 4, 2014

Citation
Liwei Fu, Karsten Frenner, and Wolfgang Osten, "Rigorous speckle simulation using surface integral equations and higher order boundary element method," Opt. Lett. 39, 4104-4107 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-14-4104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. I. Mandel’shtam, Ann. Phys. 346, 609 (1913). [CrossRef]
  2. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, 1963).
  3. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts and Company, 2007).
  4. A. A. Maradudin, ed., Light Scattering and Nanoscale Surface Roughness (Springer-Verlag, 2007).
  5. I. Simonsen, Eur. Phys. J. Special Top. 181, 1 (2010).
  6. L. Tchvialeva, G. Dhadwal, H. Lui, S. Kalia, H. Zeng, D. I. McLean, and T. K. Lee, J. Biomed. Opt. 18, 061211 (2013). [CrossRef]
  7. T. M. Elfouhaily and C.-A. Gu’erin, Wave Random Media 14, R1 (2004).
  8. V. Shchegrov, A. A. Maradudin, and E. R. Méndez, Prog. Opt. 46, 117 (2004).
  9. J. A. DeSanto, in Light Scattering and Nanoscale Surface Roughness, A. A. Maradudin, ed. (Springer-Verlag, 2007), pp. 211–235.
  10. T. A. Leskova and A. A. Maradudin, in Light Scattering and Nanoscale Surface Roughness, A. A. Maradudin, ed. (Springer-Verlag, 2007), pp. 371–408.
  11. K. F. Warnick and W. C. Chew, Wave Random Media 11, R1 (2001).
  12. C. J. Huber, W. Rieger, M. Haas, and W. M. Rucker, IEEE Trans. Magn. 34, 2441 (1998). [CrossRef]
  13. S. M. Rao, D. Wilton, and A. M. Glisson, IEEE Trans. Antennas Propag. 30, 409 (1982). [CrossRef]
  14. B. M. Kolundzija, IEEE Trans. Antennas Propag. 46, 1009 (1998).
  15. E. Onate, Structural Analysis with the Finite Element Method, Linear Statics (Springer-Verlag, 2009), Vol. 1.
  16. A. M. Kern and O. J. F. Martin, J. Opt. Soc. Am. A 26, 732 (2009). [CrossRef]
  17. A. E. Ennos, Speckle interferometry, in Laser Speckle, and Related Phenomena, A. A. Maradudin, ed. (Springer-Verlag, 1984), pp. 203–253.
  18. C. J. Huber, A. Buchau, W. Rieger, and W. M. Rucker, IEEE Trans. Magn. 36, 844 (2000). [CrossRef]
  19. C. J. Huber, W. M. Rucker, R. Hoschek, and K. R. Richter, IEEE Trans. Magn. 33, 1386 (1997). [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  21. E. Schlemmer, J. Steffan, W. M. Rucker, and K. R. Richter, IEEE Trans. Magn. 28, 1755 (1992). [CrossRef]
  22. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).
  23. F. Shen and A. Wang, Appl. Opt. 45, 1102 (2006). [CrossRef]
  24. J. E. Harvey, A. Krywonos, and C. L. Vernold, Opt. Eng. 46, 078002 (2007). [CrossRef]
  25. http://www.fastmultipole.org/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited