OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4603–4606

Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer

Arjan J. H. Meskers, Jo W. Spronck, and Robert H. Munnig Schmidt  »View Author Affiliations


Optics Letters, Vol. 39, Issue 15, pp. 4603-4606 (2014)
http://dx.doi.org/10.1364/OL.39.004603


View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of optical fibers presents several advantages with respect to free-space optical transport regarding source-frequency delivery to individual heterodyne interferometers. Unfortunately, fiber delivery to individual coaxial heterodyne interferometers leads to an increase of (periodic) nonlinearity in the measurement, because transporting coaxial frequencies through one optical fiber leads to frequency mixing. Coaxial beams thus require delivery via free-space transportation methods. In contrast, the heterodyne interferometer concept discussed in this Letter is based on separated source frequencies, which allow for fiber delivery without additional nonlinearity. This investigation analyzes the influence of external disturbances acting on the two fibers during delivery, causing asymmetry in phase between the two fibers (first-order effect), and irradiance fluctuations (second-order effect). Experiments using electro-optic phase modulation and acousto-optic irradiance modulation confirmed that the interferometer-concept can measure with sub-nanometer uncertainty using fiber delivered source frequencies, enabling fully fiber-coupled heterodyne displacement interferometers.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 30, 2014
Published: July 31, 2014

Citation
Arjan J. H. Meskers, Jo W. Spronck, and Robert H. Munnig Schmidt, "Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer," Opt. Lett. 39, 4603-4606 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-15-4603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. C. Demarest, Meas. Sci. Technol. 9, 1024C (1998). [CrossRef]
  2. T. Schuldt, M. Gohlke, D. Weise, U. Johann, A. Peters, and C. Braxmaier, Class. Quantum Grav. 26, 085008 (2009). [CrossRef]
  3. J. Schneir, T. McWaid, J. Alexander, and B. Wilfley, J. Vac. Sci. Technol. B 12, 3561 (1994). [CrossRef]
  4. P. de Groot, J. Biegen, J. Clark, X. Colonna de Lega, and D. Grigg, Appl. Opt. 41, 3853 (2002). [CrossRef]
  5. G. Fedotova, Meas. Sci. Technol. 23, 577 (1980). [CrossRef]
  6. R. Quenelle, Hewlett-Packard J. 34, 10 (1983).
  7. C. Sutton, J. Phys. E 20, 1290 (1987). [CrossRef]
  8. W. Hou and G. Wilkening, Precis. Eng. 14, 91 (1992). [CrossRef]
  9. C. Wu and R. D. Deslattes, Appl. Opt. 37, 6696 (1998). [CrossRef]
  10. B. A. W. H. Knarren, S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, Precis. Eng. 29, 229 (2005). [CrossRef]
  11. M. Tanaka, T. Yamagami, and K. Nakayama, IEEE Trans. Instrum. Meas. 38, 552 (1989). [CrossRef]
  12. C.-M. Wu, J. Lawall, and R. D. Deslattes, Appl. Opt. 38, 4089 (1999). [CrossRef]
  13. T. Schmitz and J. Beckwith, J. Mod. Opt. 49, 2105 (2002). [CrossRef]
  14. K.-N. Joo, J. D. Ellis, J. W. Spronck, P. J. M. van Kan, and R. H. M. Schmidt, Opt. Lett. 34, 386 (2009). [CrossRef]
  15. J. D. Ellis, A. J. H. Meskers, J. W. Spronck, and R. H. M. Schmidt, Opt. Lett. 36, 3584 (2011). [CrossRef]
  16. A. J. H. Meskers, J. W. Spronck, and R. H. Munnig Schmidt, Opt. Lett. 39, 1949 (2014). [CrossRef]
  17. C. Weichert, P. Köchert, R. Köning, J. Flügge, B. Andreas, U. Kuetgens, and A. Yacoot, Meas. Sci. Technol. 23, 094005 (2012). [CrossRef]
  18. J. Lawall and E. Kessler, Rev. Sci. Instrum. 71, 2669 (2000). [CrossRef]
  19. C. Wu, Opt. Commun. 215, 17 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited