OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 255–258

Transverse electromagnetic modes in chiral negatively refractive fibers and a new type of space-division multiplexing

Yusheng Cao and Junqing Li  »View Author Affiliations


Optics Letters, Vol. 39, Issue 2, pp. 255-258 (2014)
http://dx.doi.org/10.1364/OL.39.000255


View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated theoretically chiral negatively refractive fibers that guide transverse electromagnetic modes. In this Letter, novel properties of such fibers are presented, including arbitrariness of modal field and arbitrarily scalable core radius. Based on these novel properties, we conceptually propose a new type of space-division multiplexing that uses different spatial positions of the core of such fascinating fibers as different data paths.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: September 12, 2013
Revised Manuscript: November 21, 2013
Manuscript Accepted: December 2, 2013
Published: January 7, 2014

Citation
Yusheng Cao and Junqing Li, "Transverse electromagnetic modes in chiral negatively refractive fibers and a new type of space-division multiplexing," Opt. Lett. 39, 255-258 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-2-255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  3. J. B. Pendry, Science 306, 1353 (2004). [CrossRef]
  4. V. M. Shalaev, Nat. Photonics 1, 41 (2007). [CrossRef]
  5. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003). [CrossRef]
  6. J. Schelleng, C. Monzon, P. F. Loschialpo, D. W. Forester, and L. N. Medgyesi-Mitschang, Phys. Rev. E 70, 066606 (2004). [CrossRef]
  7. A. Alu and N. Engheta, IEEE Trans. Microwave Theory Tech. 52, 199 (2004).
  8. G. D’Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, Phys. Rev. E 71, 046603 (2005). [CrossRef]
  9. A. V. Novitsky, J. Opt. A 8, 864 (2006). [CrossRef]
  10. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, J. Opt. Soc. Am. B 30, 851 (2013). [CrossRef]
  11. N. Engheta and P. Pelet, Opt. Lett. 14, 593 (1989). [CrossRef]
  12. C. F. Bohren, Chem. Phys. Lett. 29, 458 (1974). [CrossRef]
  13. One might conclude that Eq. (3) is incorrect, as it seemingly implies the identity of two perpendicular vectors. But note that “perpendicular” should be applied only for real electromagnetic fields, never for complex-represented ones. Also necessarily distinguished are vectors in Euclidean space and the vector representation of complex numbers in a complex plane. Similarly, one cannot conclude that Eq. (4) means the parallelity of real electric and magnetic fields. Actually, the real electric and magnetic fields of TEM modes (obtained by taking either the real part or the Fourier transform of complex modal fields, depending on how we view the modal analysis, solving the eigenstates of time-harmonic fields or frequency-domain analysis) are perpendicular.
  14. Y. Cao, J. Li, and Q. Su, J. Opt. Soc. Am. B 28, 319 (2011). [CrossRef]
  15. T. G. Mackay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004). [CrossRef]
  16. C. Monzon and D. W. Forester, Phys. Rev. Lett. 95, 123904 (2005). [CrossRef]
  17. C.-W. Qiu, L.-W. Li, H.-Y. Yao, and S. Zouhdi, Phys. Rev. B 74, 115110 (2006). [CrossRef]
  18. C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, Phys. Rev. B 75, 245214 (2007). [CrossRef]
  19. C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, Phys. Rev. B 75, 155120 (2007). [CrossRef]
  20. C. Zhang and T. J. Cui, Appl. Phys. Lett. 91, 194101 (2007). [CrossRef]
  21. C.-W. Qiu, N. Burokur, S. Zouhdi, and L.-W. Li, J. Opt. Soc. Am. A 25, 55 (2008). [CrossRef]
  22. L. Jelinek, R. Marqués, F. Mesa, and J. D. Baena, Phys. Rev. B 77, 205110 (2008). [CrossRef]
  23. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009). [CrossRef]
  24. C. Zhang and T. J. Cui, Opt. Commun. 280, 359 (2007). [CrossRef]
  25. J. Dong and J. Li Chin, Opt. Lett. 8, 1032 (2010).
  26. J. Dong, Opt. Commun. 283, 532 (2010). [CrossRef]
  27. D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000). [CrossRef]
  28. C. R. Brewitt-Taylor, P. G. Lederer, F. C. Smith, and S. Haq, IEEE Trans. Antennas Propag. 47, 692 (1999). [CrossRef]
  29. D. Richardson, J. Fini, and L. Nelson, Nat. Photonics 7, 354 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited