OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 259–262

Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide

Xiaowei Guan, Hao Wu, Yaocheng Shi, and Daoxin Dai  »View Author Affiliations

Optics Letters, Vol. 39, Issue 2, pp. 259-262 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel polarization beam splitter (PBS) with an extremely small footprint is proposed based on a multimode interference (MMI) coupler with a silicon hybrid plasmonic waveguide. The MMI section, covered with a metal strip partially, is designed to achieve mirror imaging for TE polarization. On the other hand, for TM polarization, there is almost no MMI effect since the higher-order TM modes are hardly excited due to the hybrid plasmonic effect. With this design, the whole PBS including the 1.1 μm long MMI section as well as the output section has a footprint as small as 1.8μm×2.5μm. Besides, the fabrication process is simple since the waveguide dimension is relatively large (e.g., the input/output waveguides widths w300nm and the MMI width wMMI=800nm). Numerical simulations show that the designed PBS has a broad band of 80nm for an ER >10dB as well as a large fabrication tolerance to allow a silicon core width variation of 30nm<Δw<50nm and a metal strip width variation of 200nm<Δwm<0.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.5440) Optical devices : Polarization-selective devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: October 28, 2013
Manuscript Accepted: November 17, 2013
Published: January 7, 2014

Xiaowei Guan, Hao Wu, Yaocheng Shi, and Daoxin Dai, "Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide," Opt. Lett. 39, 259-262 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]
  2. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007). [CrossRef]
  3. D. Dai, L. Liu, S. Gao, D. Xu, and S. He, Laser Photon. Rev. 7, 303 (2013). [CrossRef]
  4. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, Opt. Express 17, 9422 (2009).
  5. D. Dai, J. Bauters, and J. Bowers, Light: Sci. Appl. 1, 1 (2012).
  6. A. Katigbak, J. F. Strother, and J. Lin, Opt. Eng. 48, 080503 (2009). [CrossRef]
  7. B. Yang, S. Shin, and D. Zhang, IEEE Photon. Technol. Lett. 21, 432 (2009).
  8. X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, IEEE Photon. Technol. Lett. 22, 1324 (2010).
  9. D. Dai and J. Bowers, Opt. Express 19, 18614 (2011). [CrossRef]
  10. J. Xiao, X. Liu, and X. Sun, Jpn. J. Appl. Phys. 47, 3748 (2008).
  11. T. Yamazaki, H. Aono, J. Yamauchi, and H. Nakano, J. Lightwave Technol. 26, 3528 (2008). [CrossRef]
  12. L. B. Soldano, A. H. Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
  13. T. K. Liang and H. K. Tsang, IEEE Photon. Technol. Lett. 17, 393 (2005).
  14. W. N. Ye, D.-X. Xu, S. Janz, P. Waldron, P. Cheben, and N. G. Tarr, Opt. Lett. 32, 1492 (2007). [CrossRef]
  15. Y. Shi, D. Dai, and S. He, IEEE Photon. Technol. Lett. 19, 825 (2007).
  16. J. Feng and Z. Zhou, Opt. Lett. 32, 1662 (2007). [CrossRef]
  17. B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, Appl. Phys. B 73, 613 (2001). [CrossRef]
  18. D. Dai, J. Lightwave Technol. 30, 3281 (2012). [CrossRef]
  19. J. Hong, H. Ryu, S. Park, J. Jeong, S. Lee, E. Lee, S. Park, D. Woo, S. Kim, and B.-H. O, IEEE Photon. Technol. Lett. 15, 72 (2003).
  20. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, Opt. Commun. 307, 46 (2013). [CrossRef]
  21. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008). [CrossRef]
  22. D. Dai and S. He, Opt. Express 17, 16646 (2009). [CrossRef]
  23. F. Lou, D. Dai, and L. Wosinski, Opt. Lett. 37, 3372 (2012). [CrossRef]
  24. J. Chee, S. Zhu, and G. Q. Lo, Opt. Express 20, 25345 (2012). [CrossRef]
  25. L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, Appl. Phys. B 113, 199 (2013). [CrossRef]
  26. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, Opt. Lett. 38, 3005 (2013). [CrossRef]
  27. S. Kasarova, N. Sultanova, C. Ivanov, and I. Nikolov, Opt. Mater. 29, 1481 (2007).
  28. L. B. Soldano, Multimode Interference Couplers: Design and Applications (Delft University, 1994).
  29. G. Roelkens, D. Thourhout, and R. Baets, Opt. Express 14, 11622 (2006). [CrossRef]
  30. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited