OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 271–274

Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth

Jin Tao, XueChao Yu, Bin Hu, Alexander Dubrovkin, and Qi Jie Wang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 2, pp. 271-274 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and numerically analyze a plasmonic Bragg reflector formed in a graphene waveguide. The results show that the graphene plasmonic Bragg reflector can produce a broadband stopband that can be tuned over a wide wavelength range by a small change in the Fermi energy level of graphene. By introducing a defect into the Bragg reflector, we can achieve a Fabry–Perot-like microcavity with a quality factor of 50 for the defect resonance mode formed in the stopband. The proposed Bragg reflector could be used as a broadband ultrafast tunable integrated filter and a broadband modulator. In addition, the defect microcavity may find applications in graphene-based resonators.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Integrated Optics

Original Manuscript: September 4, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 10, 2013
Published: January 8, 2014

Jin Tao, XueChao Yu, Bin Hu, Alexander Dubrovkin, and Qi Jie Wang, "Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth," Opt. Lett. 39, 271-274 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010). [CrossRef]
  2. X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008). [CrossRef]
  3. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008). [CrossRef]
  5. N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, Nat. Photonics 2, 564 (2008). [CrossRef]
  6. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, Nat. Mater. 9, 730 (2010). [CrossRef]
  7. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [CrossRef]
  8. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  9. M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011). [CrossRef]
  10. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009). [CrossRef]
  11. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, Nat. Commun. 4, 1811 (2013). [CrossRef]
  12. M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80, 245435 (2009). [CrossRef]
  13. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, ACS Nano 6, 431 (2012). [CrossRef]
  14. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010). [CrossRef]
  15. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature 487, 82 (2012).
  16. J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature 487, 77 (2012).
  17. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Nano Lett. 13, 2541 (2013). [CrossRef]
  18. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977). [CrossRef]
  19. E. Batke, D. Heitmann, and C. W. Tu, Phys. Rev. B 34, 6951 (1986). [CrossRef]
  20. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Nat. Photonics 7, 394 (2013). [CrossRef]
  21. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011). [CrossRef]
  22. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, Opt. Express 20, 28017 (2012). [CrossRef]
  23. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, ACS Nano 7, 2388 (2013). [CrossRef]
  24. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Nano Lett. 13, 1257 (2013). [CrossRef]
  25. Z. Y. Li and N. F. Yu, Appl. Phys. Lett. 102, 131108 (2013). [CrossRef]
  26. M. Amin, M. Farhat, and H. Bagci, Science Rep. 3, 2105 (2013).
  27. W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, ACS Nano 6, 7806 (2012). [CrossRef]
  28. X. L. Zhu, W. Yan, N. A. Mortensen, and S. S. Xiao, Opt. Express 21, 3486 (2013). [CrossRef]
  29. L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007). [CrossRef]
  30. L. A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008). [CrossRef]
  31. A. Hosseini and Y. Massoud, Opt. Express 14, 11318 (2006). [CrossRef]
  32. Z. H. Han, E. Forsberg, and S. L. He, IEEE Photon. Technol. Lett. 19, 91 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited