OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 3 — Feb. 1, 2014
  • pp: 586–589

0.35 μm CMOS avalanche photodiode with high responsivity and responsivity–bandwidth product

Wolfgang Gaberl, Bernhard Steindl, Kerstin Schneider-Hornstein, Reinhard Enne, and Horst Zimmermann  »View Author Affiliations

Optics Letters, Vol. 39, Issue 3, pp. 586-589 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly sensitive avalanche photodiode (APD) in 0.35 μm CMOS technology is presented. Due to a thick intrinsic absorption layer, a high responsivity at a low bias voltage, where the avalanche gain is 1, is combined with an excellent avalanche gain at high voltages to achieve a maximum overall responsivity of the APD of more than 10kA/W. This responsivity exceeds that of other submicrometer CMOS APDs by a factor of more than 700. As a figure of merit the responsivity–bandwidth product is defined, and the achieved value of 23.46A/W·GHz is 2.4 times higher than the values found in the literature.

© 2014 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.5160) Optical devices : Photodetectors
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: October 15, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 20, 2013
Published: January 27, 2014

Wolfgang Gaberl, Bernhard Steindl, Kerstin Schneider-Hornstein, Reinhard Enne, and Horst Zimmermann, "0.35 μm CMOS avalanche photodiode with high responsivity and responsivity–bandwidth product," Opt. Lett. 39, 586-589 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Swoboda, J. Knorr, and H. Zimmermann, IEEE J. Solid-State Circuits 40, 1521 (2005). [CrossRef]
  2. K. Iiyama, H. Takamatsu, and T. Maruyama, IEEE Photon. Technol. Lett. 22, 932 (2010). [CrossRef]
  3. B. Ciftcioglu, J. Zhang, L. Zhang, J. R. Marciante, J. D. Zuegel, R. Sobolewski, and H. Wu, IEEE Photon. Technol. Lett. 20, 2069 (2008). [CrossRef]
  4. F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, IEEE Photon. Technol. Lett. 25, 659 (2013). [CrossRef]
  5. M.-J. Lee and W.-Y. Choi, Opt. Express 18, 24189 (2010). [CrossRef]
  6. M. J. Lee, H. Rücker, and W.-Y. Choi, IEEE Electron Device Lett. 33, 80 (2012). [CrossRef]
  7. J.-S. Youn, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, IEEE J. Quantum Electron. 48, 229 (2012). [CrossRef]
  8. M. Atef, A. Polzer, and H. Zimmermann, IEEE J. Quantum Electron. 49, 350 (2013). [CrossRef]
  9. T. Shimotori, K. Maekita, T. Maruyama, and K. Iiyama, “Characterization of APDs fabricated by 0.18  μm CMOS process in blue wavelength region,” in Opto-Electronics and Communications Conference (OECC), Busan (2012), pp. 509–510.
  10. T. Shimotori, K. Maekita, R. Gyobu, and T. Maruyama, “Optimizing interdigital electrode spacing of CMOS APD for 10  Gb/s application,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto (2013), pp. 1–2.
  11. A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, IEEE Trans. Electron Devices 49, 387 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited