OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 861–864

Simple technique for integrating compact silicon devices within optical fibers

A. Micco, A. Ricciardi, G. Quero, A. Crescitelli, W. J. Bock, and A. Cusano  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 861-864 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present a simple fabrication process enabling the integration of a subwavelength amorphous silicon layer inside optical fibers by means of the arc discharge technique. To assess our method, we have fabricated a compact in-line Fabry–Perot interferometer consisting of a thin (<1μm) a-Si:H layer completely embedded within a standard single-mode optical fiber. The device exhibits low loss (1.3 dB) and high interference fringe visibility (80%) both in reflection and transmission, due to the high refractive index contrast between silica and a-Si:H. A high linear temperature sensitivity up to 106pm/°C is demonstrated in the range 120°C–400°C. The proposed interferometer is attractive for point monitoring applications as well as for ultrahigh-temperature sensing in harsh environments.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 23, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: January 1, 2014
Published: February 6, 2014

A. Micco, A. Ricciardi, G. Quero, A. Crescitelli, W. J. Bock, and A. Cusano, "Simple technique for integrating compact silicon devices within optical fibers," Opt. Lett. 39, 861-864 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, Nat. Mater. 6, 336 (2007). [CrossRef]
  2. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, Glass Sci. Technol. 3, 349 (2012).
  3. D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, Nano Lett. 11, 632 (2011). [CrossRef]
  4. G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vuckovic, Appl. Phys. Lett. 99, 191102 (2011). [CrossRef]
  5. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, ACS Nano 6, 3163 (2012). [CrossRef]
  6. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, Opt. Fiber Technol. 19, 772 (2013). [CrossRef]
  7. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, Opt. Fiber Technol. 16, 399 (2010). [CrossRef]
  8. R. He, P. Sazio, A. Peacock, N. Healy, J. Sparks, M. Krishnamurthi, V. Gopalan, and J. Badding, Nat. Photonics 6, 174 (2012). [CrossRef]
  9. F. G. Della Corte, M. Esposito Montefusco, L. Moretti, I. Rendina, and A. Rubino, Appl. Phys. Lett. 79, 168 (2001). [CrossRef]
  10. A. Cusano, D. Paladino, and A. Iadicicco, J. Lightwave Technol. 27, 1663 (2009). [CrossRef]
  11. C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988). [CrossRef]
  12. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992). [CrossRef]
  13. M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, Meas. Sci. Technol. 3, 678 (1992). [CrossRef]
  14. J. D. Shin and H. F. Taylor, J. Lightwave Technol. 12, 68 (1994). [CrossRef]
  15. C. P. Grigoropoulos, S. Moon, M. Lee, M. Hatano, and K. Suzuki, Appl. Phys. A 69, S295 (1999). [CrossRef]
  16. T. Zhu, D. Wu, M. Liu, and D. W. Duan, Sensors 12, 10430 (2012). [CrossRef]
  17. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, Sensors 12, 2467 (2012). [CrossRef]
  18. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, Opt. Lett. 32, 2662 (2007). [CrossRef]
  19. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, Opt. Lett. 32, 3071 (2007). [CrossRef]
  20. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, IEEE Sens. J. 12, 8 (2012). [CrossRef]
  21. C. E. Lee and H. F. Taylor, in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, 1995), pp. 249–269.
  22. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, J. Opt. Soc. Am. A 12, 1687 (1995). [CrossRef]
  23. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, Opt. Commun. 142, 189 (1997). [CrossRef]
  24. K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, J. Non-Cryst. Solids 299–302, 314 (2002). [CrossRef]
  25. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).
  26. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, Opt. Lett. 36, 3753 (2011). [CrossRef]
  27. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 2351121 (2002).
  28. A. Ricciardi, M. Pisco, A. Cutolo, A. Cusano, L. O’Faolain, T. F. Krauss, G. Castaldi, and V. Galdi, Phys. Rev. B 84, 0851351 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited