OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2411–2414

Two-point optical coherency matrix tomography

Ayman F. Abouraddy, Kumel H. Kagalwala, and Bahaa E. A. Saleh  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2411-2414 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The two-point coherence of an electromagnetic field is represented completely by a 4×4 coherency matrix G that encodes the joint polarization–spatial-field correlations. Here, we describe a systematic sequence of cascaded spatial and polarization projective measurements that are sufficient to tomographically reconstruct G—a task that, to the best of our knowledge, has not yet been realized. Our approach benefits from the correspondence between this reconstruction problem in classical optics and that of quantum state tomography for two-photon states in quantum optics. Identifying G uniquely determines all the measurable correlation characteristics of the field and, thus, lifts ambiguities that arise from reliance on traditional scalar descriptors, especially when the field’s degrees of freedom are correlated or classically entangled.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 10, 2014
Manuscript Accepted: March 12, 2014
Published: April 10, 2014

Ayman F. Abouraddy, Kumel H. Kagalwala, and Bahaa E. A. Saleh, "Two-point optical coherency matrix tomography," Opt. Lett. 39, 2411-2414 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). [CrossRef]
  2. F. Gori, Opt. Lett. 23, 241 (1998). [CrossRef]
  3. E. Wolf, Phys. Lett. A 312, 263 (2003). [CrossRef]
  4. P. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005). [CrossRef]
  5. K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, Nat. Photonics 7, 72 (2013). [CrossRef]
  6. J. Peřina, Coherence of Light (Van Nostrand, 1972).
  7. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 31, 858 (2006). [CrossRef]
  8. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001). [CrossRef]
  9. A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 201, 93 (2002). [CrossRef]
  10. U. Fano, Rev. Mod. Phys. 55, 855 (1983). [CrossRef]
  11. W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961). [CrossRef]
  12. W. K. Wootters, Complexity, Entropy, and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, 1990), pp. 39–46.
  13. S. Bergia, F. Cannata, A. Cornia, and R. Livi, Found. Phys. 10, 723 (1980). [CrossRef]
  14. H. Araki, Commun. Math. Phys. 75, 1 (1980). [CrossRef]
  15. A. F. Abouraddy, T. M. Yarnall, and B. E. A. Saleh, Opt. Lett. 36, 4683 (2011). [CrossRef]
  16. A. F. Abouraddy, T. M. Yarnall, and B. E. A. Saleh, Opt. Lett. 37, 2889 (2012). [CrossRef]
  17. R. J. C. Spreeuw, Found. Phys. 28, 361 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited