OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2514–2517

Monolithically integrated, ultrahigh-frequency cavity nano-optoelectromechanical system with on-chip germanium waveguide photodetector

Xiankai Sun, Ke Xu, and Hong X. Tang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2514-2517 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first demonstration of a cavity optoelectromechanical system integrated monolithically with a high-efficiency germanium photodetector on a CMOS-compatible platform. Mechanical resonances are recorded from 0.177 to 2.003 GHz with quality factor up to 4810. These monolithically integrated devices have paved the way for a new category of on-chip optoelectronic components that take the advantage of the resonant properties of the mechanical element and enables new applications such as ultracompact microwave oscillators, optomechanical sensors, and phase shifters.

© 2014 Optical Society of America

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.3120) Optical devices : Integrated optics devices
(230.5160) Optical devices : Photodetectors
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

Original Manuscript: February 12, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 23, 2014
Published: April 15, 2014

Xiankai Sun, Ke Xu, and Hong X. Tang, "Monolithically integrated, ultrahigh-frequency cavity nano-optoelectromechanical system with on-chip germanium waveguide photodetector," Opt. Lett. 39, 2514-2517 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, Nature 421, 496 (2003). [CrossRef]
  2. P. A. Truitt, J. B. Hertzberg, C. C. Huang, K. L. Ekinci, and K. C. Schwab, Nano Lett. 7, 120 (2007).
  3. M. Li, W. H. P. Pernice, and H. X. Tang, Appl. Phys. Lett. 97, 183110 (2010). [CrossRef]
  4. X. K. Sun, X. F. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012). [CrossRef]
  5. W. C. Jiang, X. Y. Lu, J. D. Zhang, and Q. Lin, Opt. Express 20, 15991 (2012). [CrossRef]
  6. X. K. Sun, J. J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
  7. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, Appl. Phys. Lett. 101, 081115 (2012). [CrossRef]
  8. X. K. Sun, X. F. Zhang, M. Poot, C. Xiong, and H. X. Tang, Appl. Phys. Lett. 101, 221116 (2012). [CrossRef]
  9. V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, Appl. Phys. Lett. 100, 261102 (2012). [CrossRef]
  10. P. H. Kim, C. Doolin, B. D. Hauer, A. J. R. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, Appl. Phys. Lett. 102, 053102 (2013). [CrossRef]
  11. K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, Appl. Phys. Lett. 97, 073112 (2010). [CrossRef]
  12. D. Kleckner, B. Pepper, E. Jeffrey, P. Sonin, S. M. Thon, and D. Bouwmeester, Opt. Express 19, 19708 (2011). [CrossRef]
  13. S. Tallur, S. Sridaran, and S. A. Bhave, Opt. Express 19, 24522 (2011). [CrossRef]
  14. T. P. Purdy, R. W. Peterson, P. L. Yu, and C. A. Regal, New J. Phys. 14, 115021 (2012). [CrossRef]
  15. Y. Liu, M. Davanco, V. Aksyuk, and K. Srinivasan, Phys. Rev. Lett. 110, 223603 (2013). [CrossRef]
  16. C. Xiong, X. K. Sun, K. Y. Fong, and H. X. Tang, Appl. Phys. Lett. 100, 171111 (2012). [CrossRef]
  17. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, Appl. Phys. Lett. 98, 113108 (2011). [CrossRef]
  18. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” arXiv:1309.6300 (2013).
  19. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, Nat. Commun. 4, 1690 (2013). [CrossRef]
  20. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, Opt. Express 19, 10967 (2011). [CrossRef]
  21. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, Opt. Express 20, 1096 (2012). [CrossRef]
  22. http://opsisfoundry.org/ .
  23. X. K. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X. Tang, Opt. Express 19, 22316 (2011). [CrossRef]
  24. Y. Xie, S.-S. Li, Y.-W. Lin, Z. Ren, and C. T. C. Nguyen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 890 (2008). [CrossRef]
  25. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996). [CrossRef]
  26. S. Sridaran and S. A. Bhave, “1.12  GHz opto-acoustic oscillator,” in 25th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2012), Paris, France (IEEE, 2012), pp. 664–667.
  27. M. Poot and H. X. Tang, Appl. Phys. Lett. 104, 061101 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited