OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 11, Iss. 4 — Apr. 1, 1986
  • pp: 219–221

Transient optical pulse formation and mode locking through parametric traveling-wave modulation

D. Haas, T. K. Gustafson, C. L. Tang, and J. McLean  »View Author Affiliations


Optics Letters, Vol. 11, Issue 4, pp. 219-221 (1986)
http://dx.doi.org/10.1364/OL.11.000219


View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transient analysis of pulse formation and mode locking for parametric traveling-wave modulation is considered. Steady-state cavity mode-locking conditions providing pulse width, and chirp taking mirror or facet dispersion into account, are discussed. A Gaussian-pulse parameter analysis for dispersive compensation resulting in intracavity pulse compression is introduced. Numerical estimates for semiconductor lasers are given.

© 1986 Optical Society of America

History
Original Manuscript: June 10, 1985
Manuscript Accepted: January 22, 1986
Published: April 1, 1986

Citation
D. Haas, T. K. Gustafson, C. L. Tang, and J. McLean, "Transient optical pulse formation and mode locking through parametric traveling-wave modulation," Opt. Lett. 11, 219-221 (1986)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-11-4-219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Haas, J. Wurl, J. McLean, T. K. Gustafson, Opt. Lett. 9, 445 (1984). [CrossRef] [PubMed]
  2. T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, P. L. Kelley, Phys. Rev. 177, 306 (1969). [CrossRef]
  3. H. C. Casey, D. D. Sell, M. B. Panish, Appl. Phys. Lett. 24, 63 (1974). As pointed out in Ref. 1, background material dispersion in GaAs is estimated to be ≅ 104 psec nm−1 km−1 in contrast to αgT22, which gives ≅ 105 psec nm−1 km−1. This ignores the Van Hove cusp, which may be avoided at the lasing frequency by using a large optical cavity. We note that this also implies equal mode spacing for continuous-wave oscillation. [CrossRef]
  4. J. P. van der Ziel, R. A. Logan, IEEE J. Quantum Electron. QE-19, 164 (1983). For a laser with confinement factors of 0.42 and 0.24 a value for the real part of ∂2k/∂ω2 is found to be of the same order of magnitude as the value of αgT22 assumed here. [CrossRef]
  5. D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 694 (1970). [CrossRef]
  6. D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, Opt. Commun. 9, 221 (1973). [CrossRef]
  7. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  8. P. Laporta, V. Magni, Appl. Opt. 24, 2014 (1985). [CrossRef] [PubMed]
  9. H. A. Haus, Jpn. J. Appl. Phys. 20, 1007 (1981). [CrossRef]
  10. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. (Macmillan, Toronto. 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited