OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 13, Iss. 2 — Feb. 1, 1988
  • pp: 132–133

Nonlinear Schrödinger solitons in a periodic structure

J. E. Sipe and Herbert G. Winful  »View Author Affiliations


Optics Letters, Vol. 13, Issue 2, pp. 132-133 (1988)
http://dx.doi.org/10.1364/OL.13.000132


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is demonstrated theoretically that a nonlinear medium with a spatially periodic refractive index can support solitons of the nonlinear Schrödinger equation.

© 1988 Optical Society of America

History
Original Manuscript: June 26, 1987
Manuscript Accepted: November 19, 1987
Published: February 1, 1988

Citation
J. E. Sipe and Herbert G. Winful, "Nonlinear Schrödinger solitons in a periodic structure," Opt. Lett. 13, 132-133 (1988)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-13-2-132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. G. Winful, Appl. Phys. Lett. 46, 527 (1985). [CrossRef]
  2. See, e.g., R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982).
  3. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).
  4. W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited