OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 13, Iss. 5 — May. 1, 1988
  • pp: 425–427

Coupling of polarization-maintaining optical fibers to Ti:LiNbO3 waveguides with angled interfaces

B. E. Kincaid  »View Author Affiliations

Optics Letters, Vol. 13, Issue 5, pp. 425-427 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Angled interfaces between Ti:LiNbO3 guided-wave devices and fiber-optic pigtails have been used to suppress backreflections. The effect of angled interfaces on coupling loss between polarization-maintaining fibers and Ti:LiNbO3 waveguides is investigated. The theory is developed and predicts very small increases in coupling loss for modest interface angles (10 deg). Experiments confirmed the theoretical coupling angles, and the added loss due to angling was measured to be 0.57 dB per interface. A Mach–Zehnder modulator was made, with optimized angled-interface geometry, which exhibited no additional insertion loss compared with that from similar devices with perpendicular interfaces.

© 1988 Optical Society of America

Original Manuscript: October 27, 1987
Manuscript Accepted: February 11, 1988
Published: May 1, 1988

B. E. Kincaid, "Coupling of polarization-maintaining optical fibers to Ti:LiNbO3 waveguides with angled interfaces," Opt. Lett. 13, 425-427 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Alferness, IEEE J. Quantum Electron. QE-17, 946 (1981). [CrossRef]
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984). [CrossRef]
  3. N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984). [CrossRef]
  4. G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985). [CrossRef]
  5. H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.
  6. R. Ulrich, S. C. Rashleigh, Appl. Opt. 19, 2453 (1980). [CrossRef] [PubMed]
  7. O. G. Ramer, J. Opt. Commun. 2, 122 (1981). [CrossRef]
  8. W. K. Burns, G. B. Hocker, Appl. Opt. 16, 2048 (1977). [CrossRef] [PubMed]
  9. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982). [CrossRef]
  10. R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979). [CrossRef]
  11. L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983). [CrossRef]
  12. M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.
  13. A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984), Chap. 2.
  14. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 20.
  15. K. S. Lee, F. S. Barnes, Appl. Opt. 26, 2294 (1987). [CrossRef] [PubMed]
  16. J. P. Taché, Appl. Opt. 26, 427 (1987). [CrossRef] [PubMed]
  17. M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited