OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 14, Iss. 12 — Jun. 15, 1989
  • pp: 627–629

Coherence theoretic algorithm to determine the transverse-mode structure of lasers

Jari Turunen, Eero Tervonen, and Ari T. Friberg  »View Author Affiliations

Optics Letters, Vol. 14, Issue 12, pp. 627-629 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an algorithm to determine the relative modal weights of a laser beam with Hermite–Gaussian modes. The method is based on coherence theory of stable resonator modes in the space–frequency domain. Numerical simulations are presented that show that the algorithm is not sensitive to moderate levels of noise.

© 1989 Optical Society of America

Original Manuscript: September 14, 1988
Manuscript Accepted: March 17, 1989
Published: June 15, 1989

Jari Turunen, Eero Tervonen, and Ari T. Friberg, "Coherence theoretic algorithm to determine the transverse-mode structure of lasers," Opt. Lett. 14, 627-629 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  2. Yu. Lyabavsky, V. Ovchinnikov, Solid-State Laser Technology (MIR, Moscow, 1975).
  3. P. W. Smith, Proc. IEEE 60, 422 (1972). [CrossRef]
  4. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978). [CrossRef]
  5. J. P. Goldsborough, Appl. Opt. 3, 267 (1964). [CrossRef]
  6. T. H. Zachos, J. E. Ripper, IEEE J. Quantum Electron. QE-5, 29 (1969). [CrossRef]
  7. P. Spano, Opt. Commun. 33, 265 (1980). [CrossRef]
  8. E. G. Johnson, Appl. Opt. 25, 2967 (1986). [CrossRef] [PubMed]
  9. F. Gori, Opt. Commun. 34, 301 (1980). [CrossRef]
  10. A. Starikov, E. Wolf, J. Opt. Soc. Am. 72, 923 (1982). [CrossRef]
  11. H. J. Eichler, G. Enterlein, D. Langhans, Appl. Phys. 23, 299 (1980). [CrossRef]
  12. S. Lavi, R. Prochaska, E. Keren, Appl. Opt. 27, 3696 (1988). [CrossRef] [PubMed]
  13. E. Wolf, G. S. Agarwal, J. Opt. Soc. Am. A 1, 541 (1984). [CrossRef]
  14. L. Mandel, E. Wolf, J. Opt. Soc. Am. 66, 529 (1976). [CrossRef]
  15. The approximations made here are consistent with the physical model, in which the multimode wave field itself is expanded as U(x, z, ω) = Σnan(ω)ψn(x, z, ω). In this equation the coefficients an(ω) are random, uncorrelated (they represent slightly different frequency components), and satisfy 〈an*(ω)am(ω)〉 = λn(ω)δnm, where the angular brackets denote ensemble averaging. Definition of the cross-spectral density W(x1, x2, z; ω) = 〈U*(x1, z, ω)U(x2, z, ω)〉 then leads to relation (3) of the text.
  16. A. Messiah, Quantum Mechanics(Wiley, New York, 1958), Vol. I, Appendix B.
  17. H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966). [CrossRef]
  18. A. T. Friberg, J. Turunen, J. Opt. Soc. Am. A 5, 713 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited