OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 14, Iss. 21 — Nov. 1, 1989
  • pp: 1219–1221

Resistance of solitons to the effects of polarization dispersion in optical fibers

L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk  »View Author Affiliations

Optics Letters, Vol. 14, Issue 21, pp. 1219-1221 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using numerical simulation, we show that solitons of any pulse width can avoid splitting or excessive broadening in response to birefringence of randomly varying orientation as long as the fiber’s polarization-dispersion parameter (in psec/km1/2) is less than ~0.3D1/2, where D is the dispersion parameter (in psec nm−1 km−1). Nevertheless, we also find that polarization dispersion tends to produce a significant amount of dispersive wave radiation from the soliton.

© 1989 Optical Society of America

Original Manuscript: June 2, 1989
Manuscript Accepted: August 28, 1989
Published: November 1, 1989

L. F. Mollenauer, C. R. Menyuk, K. Smith, and J. P. Gordon, "Resistance of solitons to the effects of polarization dispersion in optical fibers," Opt. Lett. 14, 1219-1221 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Poole, Opt. Lett. 13, 687 (1988). [CrossRef] [PubMed]
  2. C. D. Poole, C. R. Giles, Opt. Lett. 13, 155 (1988). [CrossRef] [PubMed]
  3. C. R. Menyuk, Opt. Lett. 12, 614 (1987). [CrossRef] [PubMed]
  4. C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988). [CrossRef]
  5. M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989). [CrossRef] [PubMed]
  6. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986). [CrossRef]
  7. L. F. Mollenauer, K. Smith, Opt. Lett. 13, 675 (1988). [CrossRef] [PubMed]
  8. L. F. Mollenauer, K. Smith, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1989), paper WO1.
  9. C. D. Poole, Opt. Lett. 14, 523 (1989). [CrossRef] [PubMed]
  10. See, for example, W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed. (Wiley, New York, 1957), Chap. 3.
  11. We define D here in the usual way, i.e., as D = −(2πc/λ2)k″ (where k″ is the second frequency derivative of the propagation constant), whereas in Refs. 3 and 4D was taken as −(2πc2/λ)k″.
  12. See Eqs. (5)–(7) in J. P. Gordon, Opt. Lett. 11, 662 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited