Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fisher information as the basis for diffraction optics

Not Accessible

Your library or personal account may give you access

Abstract

It is shown that the Helmholtz wave equation follows from a new uncertainty principle: Given, as data, the position of a photon in an unknown diffraction pattern, the estimated position of the centroid of the pattern will suffer minimum precision. This implies a maximally spread out diffraction pattern, obeying a principle of minimum Fisher information. The minimum is constrained by knowledge of the refractive-index function n(x, y, z) of the medium through a requirement that the mean-square spatial phase gradient across the medium should be generally nonzero. Operationally the principle works directly with intensities and not complex amplitudes. As a practical matter the numerical use of the intensity-based principle might permit a widening of the known scope of solutions to diffraction problems.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum Fisher information with coherence

Zdeněk Hradil, Jaroslav Řeháček, Luis Sánchez-Soto, and Berthold-Georg Englert
Optica 6(11) 1437-1440 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.