OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 14, Iss. 7 — Apr. 1, 1989
  • pp: 376–378

Analysis of absorbing and leaky planar waveguides: a novel method

M. R. Ramadas, E. Garmire, A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy  »View Author Affiliations

Optics Letters, Vol. 14, Issue 7, pp. 376-378 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple and general approach for analysis of absorbing and leaky waveguides. The real and imaginary parts of the propagation constant β of a planar optical waveguide are obtained by evaluating a function, defined through the eigenvalue equation, in real β. The applicability of the method is demonstrated for simple structures. To apply the method for arbitrarily graded inhomogeneous or multilayered structures we use a simple matrix approach to obtain the eigenvalue equation. The method is straightforward, accurate, and requires no iteration in the complex β plane.

© 1989 Optical Society of America

Original Manuscript: September 23, 1988
Manuscript Accepted: January 12, 1989
Published: April 1, 1989

M. R. Ramadas, A. K. Ghatak, K. Thyagarajan, E. Garmire, and M. R. Shenoy, "Analysis of absorbing and leaky planar waveguides: a novel method," Opt. Lett. 14, 376-378 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970). [CrossRef]
  2. E. M. Garmire, H. Stoll, IEEE J. Quantum Electron. QE-8, 206 (1972).
  3. W. W. Anderson, IEEE J. Quantum Electron. QE-1, 229 (1965).
  4. A. Reisinger, Appl. Opt. 12, 1015 (1973). [CrossRef] [PubMed]
  5. I. P. Kaminow, W. L. Mammel, H. P. Weber, Appl. Opt. 13, 396 (1974). [CrossRef] [PubMed]
  6. T. Findakly, C.-L. Chen, Appl. Opt. 17, 469 (1978). [CrossRef] [PubMed]
  7. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, IEEE J. Lightwave Technol. LT-5, 660 (1987). [CrossRef]
  8. It is possible to obtain a Lorentzian even when the loss is zero. This would be a Lorentzian having a HWHM of zero (not a delta function7) and would be of the form 1/(βr − βm,r)2, which may be easily plotted. Thus the method is also applicable for cases in which resonances are sharp. However, one may solve Eq. (13) directly if the waveguide is lossless.
  9. J. T. Chilwell, I. J. Hodgkinson, J. Opt. Soc. Am. A 1, 742 (1984). [CrossRef]
  10. L. M. Walpita, J. Opt. Soc. Am. A 2, 595 (1985). [CrossRef]
  11. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, UK, 1981).
  12. M. R. Ramadas, R. K. Varshney, K. Thyagarajan, A. K. Ghatak, “A matrix approach to study the propagation characteristics of a general nonlinear planar waveguide,” IEEE J. Lightwave Technol. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited