OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 15, Iss. 4 — Feb. 15, 1990
  • pp: 224–226

Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers

Govind P. Agrawal  »View Author Affiliations


Optics Letters, Vol. 15, Issue 4, pp. 224-226 (1990)
http://dx.doi.org/10.1364/OL.15.000224


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of intrapulse stimulated Raman scattering (ISRS) on the quality of soliton-effect pulse compression is analyzed by solving the generalized nonlinear Schrödinger equation numerically. The results show that ISRS can improve the performance of soliton-effect pulse compressors both qualitatively and quantitatively. The compressed pulse is shorter with a higher peak power when ISRS is taken into account. Furthermore it is pedestal free as it separates from the background. The separation is due to the soliton self-frequency shift initiated by the process of ISRS. It can also be understood in terms of the soliton decay. The optimum fiber length is found to be longer than that expected in the absence of ISRS.

© 1990 Optical Society of America

History
Original Manuscript: September 22, 1989
Manuscript Accepted: December 15, 1989
Published: February 15, 1990

Citation
Govind P. Agrawal, "Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers," Opt. Lett. 15, 224-226 (1990)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-15-4-224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a recent review see G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.
  2. A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988). [CrossRef]
  3. E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988). [CrossRef]
  4. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983). [CrossRef] [PubMed]
  5. E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).
  6. F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 659 (1986). [CrossRef] [PubMed]
  7. J. P. Gordon, Opt. Lett. 11, 662 (1986). [CrossRef] [PubMed]
  8. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).
  9. K. Tai, A. Hasegawa, N. Bekki, Opt. Lett. 13, 392 (1988). [CrossRef] [PubMed]
  10. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987). [CrossRef] [PubMed]
  11. Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987). [CrossRef]
  12. Sections 2.3 and 5.5 of Ref. 1.
  13. The split-step Fourier method is also known as the beam-propagation method. See Sec. 2.4 of Ref. 1 and references therein for details of the numerical method.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited