OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 17, Iss. 1 — Jan. 1, 1992
  • pp: 34–36

Simulations to demonstrate reduction of the Gordon–Haus effect

D. Marcuse  »View Author Affiliations


Optics Letters, Vol. 17, Issue 1, pp. 34-36 (1992)
http://dx.doi.org/10.1364/OL.17.000034


View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The superposition of spontaneous emission noise on a train of soliton pulses produces a random change of the center frequency of the soliton spectrum that causes a change of the group velocity of individual solitons, which in long-light-wave systems translates into a random jitter of the position of the pulses at the receiver. This phenomenon is known as the Gordon–Haus effect. If uncontrolled, the Gordon–Haus effect sets a definite limit on the permissible data rate or on the length of soliton-based light-wave systems. Recently Kodama and Hasegawa [Opt. Lett. 17, 31 (1992)] have shown that the Gordon–Haus effect can be suppressed by placing filters along the fiber that reduce the frequency jitter and the concomitant group-velocity changes. We demonstrate the reduction of the Gordon–Haus effect by computer simulations.

© 1992 Optical Society of America

History
Original Manuscript: August 8, 1991
Published: January 1, 1992

Citation
D. Marcuse, "Simulations to demonstrate reduction of the Gordon–Haus effect," Opt. Lett. 17, 34-36 (1992)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-17-1-34


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hasegawa, F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  3. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  4. N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983). [CrossRef]
  5. A. Hasegawa, Appl. Opt. 23, 3302 (1984). [CrossRef] [PubMed]
  6. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986). [CrossRef]
  7. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, Boston, Mass., 1991), Chap. 9.
  8. J. P. Gordon, A. H. Haus, Opt. Lett. 11, 665 (1986). [CrossRef] [PubMed]
  9. M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991). [CrossRef]
  10. M. Nakazawa, K. Kurokawa, H. Kubota, E. Yamada, Phys. Rev. Lett. 65, 1881 (1990). [CrossRef] [PubMed]
  11. M. Nakazawa, H. Kubota, K. Kurokawa, E. Yamada, J. Opt. Soc. Am. B 8, 1811 (1991). [CrossRef]
  12. Y. Kodama, A. Hasegawa, Opt. Lett. 17, 31 (1992). [CrossRef] [PubMed]
  13. A. Hasegawa, Y. Kodama, Opt. Lett. 15, 1443 (1990). [CrossRef] [PubMed]
  14. D. Marcuse, “An alternative derivation of the Gordon–Haus effect,”IEEE Photon. Technol. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited