Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations

Not Accessible

Your library or personal account may give you access

Abstract

We present Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres that occupy up to 25% by volume and size parameter ka = 0.2. Maxwell’s equations in multiple-scattering form are solved iteratively for each realization. Convergence is demonstrated numerically by varying the number of iterations, the number of spheres up to 4000, and the number of realizations. Results are compared with that of the independent-scattering approximation, Foldy’s approximation, the quasi-crystalline approximation, and the quasi-crystalline approximation with coherent potential. The simulations are in good agreement with the last two approximations.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries

L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner
J. Opt. Soc. Am. A 12(8) 1772-1781 (1995)

Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations

L. Tsang, K. H. Ding, S. E. Shih, and J. A. Kong
J. Opt. Soc. Am. A 15(10) 2660-2669 (1998)

Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids

Chi O. Ao and Jin A. Kong
J. Opt. Soc. Am. A 19(6) 1145-1156 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved