OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 18, Iss. 19 — Oct. 1, 1993
  • pp: 1583–1585

Optimal phase modulation for gradient-index optical filters

Jeff Druessel, Jeff Grantham, and Peter Haaland  »View Author Affiliations

Optics Letters, Vol. 18, Issue 19, pp. 1583-1585 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier transforms provide a basis for the design of gradient-index optical filters. A variety of techniques that differ in their treatment of the complex part or phase of the transformed refractive-index profile are reported. Here we describe a method of using the phase of the index profile as a variable to permit a closed-form, constrained optimization of rugate filters. Use of an optimal phase function in Fourier-based filter designs reduces the product of index contrast and thickness for desired reflectance spectra. The shape of the reflectance spectrum is recovered with greater fidelity by suppression of Gibbs oscillations and shifting of sidelobes into desired wavelength regions.

© 1993 Optical Society of America

Original Manuscript: March 19, 1993
Published: October 1, 1993

Jeff Druessel, Peter Haaland, and Jeff Grantham, "Optimal phase modulation for gradient-index optical filters," Opt. Lett. 18, 1583-1585 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Sossi, P. Kard, Eestvi NSV Tead. Akad. Toim. Fuus. Mat. 17, 41 (1968). (An English translation of this paper is available from the Translation Services of the Canada Institute for Scientific and Technical Information, National Research Council, Ottawa, Ontario K1A OS2, Canada.)
  2. L. Sossi, Eestvi NSV Tead. Akad. Toim. Fuus. Mat. 23, 229 (1974).
  3. L. Sossi, Eestvi NSV Tead. Akad. Toim. Fuus. Mat. 25, 171 (1976).
  4. B. Bovard, Appl. Opt. 27, 3062 (1988). [CrossRef] [PubMed]
  5. B. Bovard, Barr Associates, Bedford, Mass. 01730 (personal communication, 1993).
  6. B. Bovard, Appl. Opt. 27, 1998 (1988). [CrossRef] [PubMed]
  7. B. Bovard, Appl. Opt. 29, 24 (1990). [CrossRef] [PubMed]
  8. J. A. Dobrowolski, D. Lowe, Appl. Opt. 17, 3039 (1978). [CrossRef] [PubMed]
  9. P. G. Verly, J. A. Dobrowolski, W. J. Wild, R. L. Burton, Appl. Opt. 28, 2864 (1989). [CrossRef] [PubMed]
  10. H. Fabricius, Appl. Opt. 31, 5191 (1992). [CrossRef] [PubMed]
  11. P. G. Verly, J. A. Dobrowolski, Appl. Opt. 29, 3672 (1990). [CrossRef] [PubMed]
  12. S. Guan, J. Chem. Phys. 91, 775 (1989). [CrossRef]
  13. S. Guan, R. McIver, J. Chem. Phys. 92, 5841 (1990). [CrossRef]
  14. K. Reihl, “Collisional detachment of negative ions using Fourier transform mass spectrometry,” Ph.D. dissertation (U.S. Air Force Institute of Technology, Dayton, Ohio, 1992).
  15. H. A. Mcleod, Thin-Film Optical Filters (Macmillan, New York, 1986), Chap. 2, pp. 11–48.
  16. Pro-Matlab version 3.5i, The Math Works, Inc., Natick, Mass.
  17. R. Jacobsson, in Physics of Thin Films, G. Haas, M. Francombe, R. Hoffman, eds. (Academic, New York, 1975), Vol. 8, pp. 51–97.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited