OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 18, Iss. 19 — Oct. 1, 1993
  • pp: 1666–1668

Tunneling of electromagnetic waves in two-dimensional photonic crystals

S. Y. Lin and G. Arjavalingam  »View Author Affiliations


Optics Letters, Vol. 18, Issue 19, pp. 1666-1668 (1993)
http://dx.doi.org/10.1364/OL.18.001666


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The tunneling of electromagnetic waves in the band-gap region of periodic dielectric arrays is investigated with the coherent microwave transient spectroscopy technique. Transmission probabilities at frequencies in the fundamental band gap are measured and found to depend exponentially on sample thickness. From these results the frequency dependence of the imaginary wave vector is determined. The peak imaginary wave vector, which occurs at midgap, is observed to be proportional to the width of the band gap, unlike the case for single-barrier tunneling of electrons, where the relationship is expected to vary as the square root of the barrier height.

© 1993 Optical Society of America

History
Original Manuscript: April 5, 1993
Published: October 1, 1993

Citation
S. Y. Lin and G. Arjavalingam, "Tunneling of electromagnetic waves in two-dimensional photonic crystals," Opt. Lett. 18, 1666-1668 (1993)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-19-1666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, J. Wang, Phys. Rev. Lett. 64, 2418 (1990). [CrossRef] [PubMed]
  2. M. Plihal, A. Shambrook, A. A. Maradudin, P. Sheng, Opt. Commun. 80, 199 (1991). [CrossRef]
  3. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, Phys. Rev. Lett. 67, 2017 (1991). [CrossRef] [PubMed]
  4. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rapp, J. D. Joannopoulos, Phys. Rev. Lett. 68, 2023 (1992); J. Opt. Soc. Am. B 10, 322 (1993). [CrossRef] [PubMed]
  5. Y. Pastol, G. Arjavalingam, G. V. Kopcsay, J.-M. Halbout, Appl. Phys. Lett. 55, 2277 (1989); G. Arjavalingam, N. Theophilou, Y. Pastol, G. V. Kopcsay, M. Angelopoulos, J. Chem. Phys. 93, 6 (1990). [CrossRef]
  6. G. Arjavalingam, Y. Pastol, J.-M. Halbout, G. V. Kopcsay, IEEE Trans. Microwave Theory Tech. 38, 615 (1990). [CrossRef]
  7. See, for example, C. B. Duke, in Solid State Physics (Academic, New York, 1969), Vol. 10, pp. 30–36 and Chap. VI.
  8. See, for example, Z. Zhang, S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990); K. M. Ho, C. T. Chan, C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990); K. M. Leung, Y. F. Liu, Phys. Lett. 65, 2646 (1990). [CrossRef] [PubMed]
  9. In a periodic dielectric medium, Maxwell's wave equation for electric displacement vector D, when expanded in terms of plane waves, contains three terms.8 They are the kinetic energy term (k + G)2, the potential energy term ∼V(G − G′), and the total energy term ω2/c2. Here, G is a reciprocal-lattice vector and c the speed of light. When ∊(r) is properly scaled, the corresponding wave equation can be expressed in terms of dimensionless constants, i.e., kao, Gao, and ωao/c. It follows that Eg at the Brillouin zone edge scales linearly with 1/ao as does κ at the midgap. Hence, a linear relationship between Eg and κmax is expected.
  10. E. Yablonovitch, T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited