OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 18, Iss. 23 — Dec. 1, 1993
  • pp: 2041–2043

Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses

M. Beck, M. G. Raymer, I. A. Walmsley, and V. Wong  »View Author Affiliations

Optics Letters, Vol. 18, Issue 23, pp. 2041-2043 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new method—chronocyclic tomography—for determining the amplitude and phase structure of a short optical pulse. The technique is based on measurements of the energy spectrum of the pulse after it has passed through a time–frequency-domain imaging system. Tomographic inversion of these measured spectra yields the time–frequency Wigner distribution of the pulse, which uniquely determines the amplitude and phase structure.

© 1993 Optical Society of America

Original Manuscript: July 13, 1993
Published: December 1, 1993

M. Beck, I. A. Walmsley, V. Wong, and M. G. Raymer, "Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses," Opt. Lett. 18, 2041-2043 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-C. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985); C. Yan, J.-C. Diels, J. Opt. Soc. Am. B 8, 1259 (1991). [CrossRef] [PubMed]
  2. K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989); Appl. Phys. Lett. 54, 1201 (1989). [CrossRef]
  3. J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991). [CrossRef]
  4. D. J. Kane, R. Trebino, Opt. Lett. 18, 823 (1993). [CrossRef] [PubMed]
  5. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969). [CrossRef]
  6. B. H. Kolner, M. Nazarathy, Opt. Lett. 14, 630 (1989). [CrossRef] [PubMed]
  7. M. T. Kauffman, A. A. Godil, B. A. Auld, W. C. Banyai, D. M. Bloom, Electron. Lett. 29, 268 (1993). [CrossRef]
  8. M. T. Kauffman, W. C. Banyai, D. M. Bloom, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper CPD33.
  9. K.-H. Brenner, K. Wodkiewicz, Opt. Commun. 43, 103 (1982); J. Paye, IEEE J. Quantum Electron. 28, 2262 (1992). [CrossRef]
  10. O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987). [CrossRef]
  11. All Fourier-transform pairs will be represented by f˜(ω)=(2π)−1/2∫−∞∞f(t)exp(iωt)dt,where ω denotes the frequency as measured from some average carrier frequencyω¯. All times t and frequencies ω will be dimensionless quantities (i.e., scaled by a characteristic time T).
  12. Our definition differs from that of Ref. 9 (see Ref. 13).
  13. D. T. Smithy, M. Beck, A. Faridani, M. G. Raymer, Phys. Rev. Lett. 70, 1244 (1993). [CrossRef]
  14. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic, New York, 1980), Chaps. 6–8, p. 90.
  15. The probability distributions are normalized such that ∫−∞∞Pθ(ωθ)dωθ=1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited