OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 18, Iss. 5 — Mar. 1, 1993
  • pp: 346–348

Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides

Takumi Fujiwara, Ramakant Srivastava, Xiaofan Cao, and Ramu V. Ramaswamy  »View Author Affiliations

Optics Letters, Vol. 18, Issue 5, pp. 346-348 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantitative comparison of the photorefractive effect in proton-exchanged (PE), annealed-proton-exchanged (APE), and Ti-diffused LiNbO3 waveguides in the visible region is reported. In the low-intensity region, the optically induced index change in PE/APE waveguides is almost 3 orders of magnitude smaller than that of Ti-diffused waveguides for a given intensity, primarily as a result of the increased dark conductivity owing to proton exchange. However, the photorefractive index change at higher intensities is almost the same for all the waveguides. Our results indicate that the optically induced space-charge field is relatively independent of the concentration or the valence state of iron impurities and the waveguide fabrication process.

© 1993 Optical Society of America

Original Manuscript: September 9, 1992
Published: March 1, 1993

Takumi Fujiwara, Ramakant Srivastava, Xiaofan Cao, and Ramu V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Becker, Appl. Phys. Lett. 42, 131 (1983). [CrossRef]
  2. J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, J. J. Veselka, J. Appl. Phys. 55, 269 (1984). [CrossRef]
  3. T. Fujiwara, X. F. Cao, R. Srivastava, R. V. Ramaswamy, Appl. Phys. Lett. 61, 743 (1992). [CrossRef]
  4. T. Fujiwara, H. Mori, Y. Fujii, Ferroelectrics 95, 133 (1989). [CrossRef]
  5. A. M. Glass, Opt. Eng. 17, 470 (1978).
  6. R. Göring, Z. Yuan-Ling, St. Steinberg, Appl. Phys. A 55, 97 (1992). [CrossRef]
  7. R. A. Becker, R. C. Williamson, Appl. Phys. Lett. 47, 1024 (1985). [CrossRef]
  8. S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984). [CrossRef]
  9. R. Grousson, M. Henry, S. Mallick, S. L. Xu, J. Appl. Phys. 54, 3012 (1983). [CrossRef]
  10. P. Günter, Phys. Rep. 93, 199 (1982). [CrossRef]
  11. S. McMeekin, R. M. De La Rue, W. Johnstone, IEEE J. Lightwave Technol. 10, 163 (1992). [CrossRef]
  12. A. Loni, G. Hay, R. M. De La Rue, J. M. Winfield, IEEE J. Lightwave Technol. 7, 911 (1989). [CrossRef]
  13. P. G. Suchoski, T. K. Findakly, F. J. Leonberger, Opt. Lett. 13, 1050 (1988). [CrossRef] [PubMed]
  14. C. E. Rice, J. L. Jackel, Mater. Res. Bull. 19, 591 (1984). [CrossRef]
  15. J. Olivares, E. Diéguez, F. J. López, J. M. Cabrera, Appl. Phys. Lett. 61, 624 (1992). [CrossRef]
  16. E. Krätzig, Ferroelectrics 21, 635 (1978). [CrossRef]
  17. T. Fujiwara, A. Terashima, H. Mori, Appl. Phys. Lett. 55, 2718 (1989). [CrossRef]
  18. P. A. Augustov, K. K. Shvarts, Appl. Phys. 21, 191 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited