OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 18, Iss. 8 — Apr. 15, 1993
  • pp: 568–570

Electrodynamics of visible-light interactions with the vertebrate retinal rod

Melinda J. Piket-May, Allen Taflove, and John B. Troy  »View Author Affiliations


Optics Letters, Vol. 18, Issue 8, pp. 568-570 (1993)
http://dx.doi.org/10.1364/OL.18.000568


View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the initial investigation of the electrodynamics of visible-light interaction with the outer segment of the vertebrate retinal rod based on detailed, first-principles computational electromagnetics modeling. The computational method employs a direct time integration of Maxwell’s equations in a two-dimensional space grid for both transverse-magnetic and transverse-electric vector-field modes. Detailed maps of the optical standing wave within the retinal rod are given for three illumination wavelengths: 714, 505, and 475 nm. The standing-wave data are Fourier analyzed to obtain spatial frequency spectra. Except for isolated peaks, the spatial frequency spectra are essentially independent of the illumination wavelength.

© 1993 Optical Society of America

History
Original Manuscript: December 21, 1992
Published: April 15, 1993

Citation
Melinda J. Piket-May, John B. Troy, and Allen Taflove, "Electrodynamics of visible-light interactions with the vertebrate retinal rod," Opt. Lett. 18, 568-570 (1993)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-8-568

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited