OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 19, Iss. 2 — Jan. 15, 1994
  • pp: 105–107

Total intensity modulation and mode hopping in a coupled-cavity laser as a result of external-cavity length variations

M. Munroe, S. E. Hodges, J. Cooper, and M. G. Raymer  »View Author Affiliations

Optics Letters, Vol. 19, Issue 2, pp. 105-107 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Subwavelength variation in the length of an external cavity strongly coupled to a very short (100 μm) dye laser results in large changes in the total intensity and frequency hopping of the lasing modes. These measurements are in agreement with a multimode theory of coupled-cavity laser dynamics. The modulation in the total intensity is due to the frequency-dependent gain associated with the coupled-cavity mode structure, while the mode hopping characteristics can be attributed to frequency-dependent losses caused by very weak (~10−3) reflections or diffuse scattering from the glass surfaces in the system.

© 1994 Optical Society of America

Original Manuscript: June 28, 1993
Published: January 15, 1994

M. Munroe, S. E. Hodges, J. Cooper, and M. G. Raymer, "Total intensity modulation and mode hopping in a coupled-cavity laser as a result of external-cavity length variations," Opt. Lett. 19, 105-107 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991). [CrossRef]
  2. R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986). [CrossRef]
  3. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980). [CrossRef]
  4. D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984). [CrossRef]
  5. T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).
  6. H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984). [CrossRef]
  7. P. J. De Groot, J. Mod. Opt. 37, 1199 (1990). [CrossRef]
  8. M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992). [CrossRef] [PubMed]
  9. For a complete description of the laser and the turn-on transient statistics, see S. E. Hodges, M. Munroe, D. Adkison, W. Gadomski, M. G. Raymer, Opt. Lett. 17, 931 (1992). [CrossRef] [PubMed]
  10. K. Shimoda, Introduction to Laser Physics (Springer-Verlag, New York, 1986), Chap. 9, pp. 178–182.
  11. S. E. Hodges, Ph.D. dissertation (University of Oregon, Eugene, Ore., 1993).
  12. S. E. Hodges, M. Munroe, J. Cooper, M. G. Raymer, Opt. Lett. 18, 1481 (1993). [CrossRef] [PubMed]
  13. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), pp. 338–346.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited