OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 19, Iss. 21 — Nov. 1, 1994
  • pp: 1684–1686

Photomechanical basis of laser ablation of biological tissue

D. Albagli, M. Dark, L. T. Perelman, C. von Rosenberg, I. Itzkan, and M. S. Feld  »View Author Affiliations


Optics Letters, Vol. 19, Issue 21, pp. 1684-1686 (1994)
http://dx.doi.org/10.1364/OL.19.001684


View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photomechanical model of laser ablation of biological tissue asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. We show that, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional solution predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to occur. An interferometric technique has been developed to measure the time-dependent thermoelastic expansion, and the results for subthreshold laser fluences are in precise agreement with the predictions of the three-dimensional model.

© 1994 Optical Society of America

History
Original Manuscript: May 12, 1994
Published: November 1, 1994

Citation
D. Albagli, M. Dark, L. T. Perelman, C. von Rosenberg, I. Itzkan, and M. S. Feld, "Photomechanical basis of laser ablation of biological tissue," Opt. Lett. 19, 1684-1686 (1994)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-19-21-1684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112. [CrossRef]
  2. R. Srinivasan, Science 234, 559 (1986). [CrossRef] [PubMed]
  3. D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).
  4. V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993). [CrossRef]
  5. J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993). [CrossRef]
  6. F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).
  7. R. S. Dingus, R. J. Scammon, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 180. [CrossRef]
  8. S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).
  9. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1986), pp. 16–17, 87–88.
  10. D. Potter, Computational Physics (Wiley, New York, 1977), pp. 63–75.
  11. D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994). [CrossRef] [PubMed]
  12. D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994). [CrossRef] [PubMed]
  13. L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited