OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 19, Iss. 23 — Dec. 1, 1994
  • pp: 2024–2026

Radiometric model for propagation of coherence

Emil Wolf  »View Author Affiliations


Optics Letters, Vol. 19, Issue 23, pp. 2024-2026 (1994)
http://dx.doi.org/10.1364/OL.19.002024


View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radiometric model for the propagation of coherence is formulated, which greatly simplifies the determination of the cross-spectral density and of the spectral degree of coherence of the field at an arbitrary distance from any planar, secondary, quasi-homogeneous source. The radiance function, which plays a central role in this model, satisfies all the postulates of traditional radiometry.

© 1994 Optical Society of America

History
Original Manuscript: July 25, 1994
Published: December 1, 1994

Citation
Emil Wolf, "Radiometric model for propagation of coherence," Opt. Lett. 19, 2024-2026 (1994)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-19-23-2024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. S. Dolin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 244 (1964).
  2. V. I. Tatarskii, The Effects of the Turbulant Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971), Sec. 63.
  3. E. Collett, J. T. Foley, E. Wolf, J. Opt. Soc. Am. 67, 465 (1977). [CrossRef]
  4. H. M. Pedersen, J. Opt. Soc. Am. A 8, 176 (1991); H. M. Pedersen, J. Opt. Soc. Am. A 9, 1626 (1992); . [CrossRef]
  5. W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 60.
  6. E. Wolf, J. Opt. Soc. Am. 72, 343 (1982); J. Opt. Soc. Am. A 3, 76 (1986). [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1986), Sec. 3.7.
  8. E. W. Marchand, E. Wolf, J. Opt. Soc. Am. 62, 379 (1972). [CrossRef]
  9. A. Walther, J. Opt. Soc. Am. 58, 1256 (1968). [CrossRef]
  10. Equivalent but formally different generalizations of Walther’s definition, valid at points throughout the half-space z > 0, are considered in Refs. 11 and 12. The function Bν(r, s) defined by Eq. (8) may be regarded as an analog of the Wigner distribution function well known in quantum mechanics.13
  11. M. Bastians, J. Opt. Soc. Am. A 3, 1227 (1986). [CrossRef]
  12. A. T. Friberg, Appl. Opt. 25, 4547 (1986). [CrossRef] [PubMed]
  13. K. Imre, E. Ozizmer, M. Rosenblum, P. Zweifel, J. Math. Phys. 8, 1097 (1967). [CrossRef]
  14. A. T. Friberg, J. Opt. Soc. Am. 69, 192 (1979). [CrossRef]
  15. K. Kim, E. Wolf, J. Opt. Soc. Am. A 4, 1233 (1987). [CrossRef]
  16. W. H. Carter, E. Wolf, J. Opt. Soc. Am. 67, 785 (1977). [CrossRef]
  17. E. Wolf, W. H. Carter, in Coherence and Quantum Optics IV, L. Mandel, E. Wolf (Plenum, New York, 1978), p. 415.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited