OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 19, Iss. 4 — Feb. 15, 1994
  • pp: 257–259

Measurement of the nonlinear index of silica-core and dispersion-shifted fibers

K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi  »View Author Affiliations

Optics Letters, Vol. 19, Issue 4, pp. 257-259 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have accurately measured the nonlinear refractive index, n2, of the glass found in silica-core and dispersion-shifted optical fibers. We find that at 1.319 µm the n2 of silica-core and dispersion-shifted fibers is 2.36 × 10−16 and 2.52 × 10−16 cm2/W (±5%), respectively. We also estimate that the n2 of germania is three times the n2 of pure silica. Because the wavelength dependence of n2 between 1.3 and 1.5 µm is known to be small, our measured values should also be valid at 1.55 µm.

© 1994 Optical Society of America

Original Manuscript: August 3, 1993
Published: February 15, 1994

K. S. Kim, W. A. Reed, K. W. Quoi, and R. H. Stolen, "Measurement of the nonlinear index of silica-core and dispersion-shifted fibers," Opt. Lett. 19, 257-259 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marcuse, A. R. Chraplyvy, R. W. Tkach, J. Lightwave Technol. 9, 121 (1991). [CrossRef]
  2. W. L. Smith, in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1986), Vol. 3, pp.259–281.
  3. R. H. Stolen, W. A. Reed, K. S. Kim, K. W. Quoi, in Technical Digest of Symposium on Optical Fiber Measurements, 1992 (National Institute of Standards and Technology, Boulder, Colo., 1992), pp. 71–75.
  4. J. Stone, L. W. Stulz, Electron. Lett. 23, 781 (1987). [CrossRef]
  5. R. H. Stolen, C. Lin, Phys. Rev. A 14,1948 (1978). Note that in this paper an incorrect factor of 6/5 was used to reduce n2 as measured in anon-polarization-preserving fiber to the value for linear polarization.
  6. W. J. Stewart, IEEE J. Quantum Electron. QE-18, 1451 (1982). [CrossRef]
  7. T. A. Lenehan, Bell Syst. Tech. J. 62, 2663 (1983).
  8. H. C. Lefvevre, Electron. Lett. 16, 778 (1984). [CrossRef]
  9. S. C. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992). [CrossRef]
  10. D. Milam, M. J. Weber, J. Appl. Phys. 47, 2497 (1976). [CrossRef]
  11. R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989). [CrossRef]
  12. M. Monerie, Y. Durteste, Electron. Lett. 23,961 (1987). [CrossRef]
  13. A. Wada, T. O. Tsun, R. Yamauchi, in Proceedings of European Conference on Optical Communications (VDE-Verlag,Berlin, 1992), p. 42.
  14. N. L. Boling, A. J. Glass, A. OwyOung, IEEE J. Quantum Electron. QE-14, 601 (1978). [CrossRef]
  15. M. Sheik-Bahae, IEEE J. Quantum Electron. 27, 1296 (1991); personal discussion with M. Sheik-Bahae, D. J. Hagan, Center for Research in Electro-Optics and Lasers, University of Central Florida, Orlando, Fla. (1993). [CrossRef]
  16. W. E. Torruellas, “The optical cubic susceptibility dispersion of some transparent thin films,” Ph.D. dissertation (Optical Sciences Center, University of Arizona, Tucson, Ariz., 1990), p. 140.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited