OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 19, Iss. 8 — Apr. 15, 1994
  • pp: 527–529

Picosecond measurement of absorptive and refractive optical nonlinearities in GaP at 532 nm

Steve Rychnovsky, G. R. Allan, C. H. Venzke, and Thomas F. Boggess  »View Author Affiliations

Optics Letters, Vol. 19, Issue 8, pp. 527-529 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Picosecond time-resolved pump–probe and Z-scan measurements are used to investigate the nonlinear refraction and absorption associated with intense picosecond excitation above the indirect band edge of GaP. The pump–probe results reveal both an instantaneous absorption feature, which is consistent with two-photon absorption, and a long-lived feature that is associated with the generation of free carriers by linear indirect absorption. Z scans conducted with pulses of 25- and 95-ps duration indicate that, for these pulse widths, the nonlinear refraction in GaP is dominated by the linear generation of free carriers and that the role of the electronic Kerr effect is negligible. The measured free-carrier refraction is compared with the value predicted from a simple model based on band filling. This model predicts that the primary contribution to the index change at the applied optical frequency arises from holes blocking direct transitions near the zone center and that similar blocking of indirect transitions has a negligible effect on the index.

© 1994 Optical Society of America

Original Manuscript: September 27, 1993
Published: April 15, 1994

Steve Rychnovsky, G. R. Allan, C. H. Venzke, and Thomas F. Boggess, "Picosecond measurement of absorptive and refractive optical nonlinearities in GaP at 532 nm," Opt. Lett. 19, 527-529 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Rychnovsky, G. R. Allan, C. H. Venzke, A. L Smirl, T. F. Boggess, Proc. Soc. Photo-Opt. Instrum. Eng. 1692, 191 (1992).
  2. O. Madelung, ed., Data in Science and Technology: Semiconductors—Group IV Elements and III–V Compounds (Springer-Verlag, New York, 1991), p. 91.
  3. T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986). [CrossRef]
  4. D. H. Reitze, T. R. Zhang, W. M. Wood, M. C. Downer, J. Opt. Soc. Am. B 7, 84 (1990). [CrossRef]
  5. J. I. Dadap, G. B. Focht, D. H. Reitze, M. C. Downer, Opt. Lett. 16, 499 (1991). [CrossRef] [PubMed]
  6. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989). [CrossRef] [PubMed]
  7. W. Zhao, P. Pallfy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993). [CrossRef]
  8. T. F. Boggess, K. Bohnert, D. P. Norwood, C. D. Mire, A. L. Smirl, Opt. Commun. 64, 387 (1987). [CrossRef]
  9. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, “Measurement of the anisotropy of two-photon absorption in zinc blende semiconductors,” IEEE J. Quantum Electron. (to be published).
  10. E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Boggess, Opt. Eng. 24, 613 (1985).
  11. B. S. Wherrett, J. Opt. Soc. Am. B 1, 67 (1984). [CrossRef]
  12. A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981). [CrossRef]
  13. D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981). [CrossRef]
  14. W. Ji, S. H. Tang, A. K. Kukaswadia, J. Appl. Phys. 73, 8455 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited