OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 20, Iss. 10 — May. 15, 1995
  • pp: 1083–1085

Determination of phase mode components in terms of local wave-front slopes: an analytical approach

E. Acosta, S. Bará, M. A. Rama, and S. Ríos  »View Author Affiliations


Optics Letters, Vol. 20, Issue 10, pp. 1083-1085 (1995)
http://dx.doi.org/10.1364/OL.20.001083


View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical formulation that relates the modal expansion coefficients of a given wave front to its local transverse phase derivatives is proposed. The modal coefficients are calculated as a weighted integral over the wave-front slopes. The weighting functions for each mode are the components of a two-dimensional vector whose divergence equals the corresponding mode function. This approach is useful for analytical phase reconstruction from the input data provided by shearing interferometers or Hartmann–Shack wave-front sensors. Numerical results for a simulated experiment in terms of a set of Zernike polynomials are given.

© 1995 Optical Society of America

History
Original Manuscript: January 10, 1995
Published: May 15, 1995

Citation
E. Acosta, S. Bará, M. A. Rama, and S. Ríos, "Determination of phase mode components in terms of local wave-front slopes: an analytical approach," Opt. Lett. 20, 1083-1085 (1995)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-10-1083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Merkle, in International Trends in Optics, J. W. Goodman, ed. (Academic, London, 1991), pp. 375–390.
  2. J. Primot, G. Rousset, J. C. Fontanella, J. Opt. Soc. Am. A 7, 1598 (1990). [CrossRef]
  3. M. P. Rimmer, J. C. Wyant, Appl. Opt. 14, 142 (1975). [PubMed]
  4. R. G. Lane, M. Tallon, Appl. Opt. 31, 6902 (1992). [CrossRef] [PubMed]
  5. W. H. Southwell, J. Opt. Soc. Am. 70, 988 (1980). [CrossRef]
  6. D. L. Fried, J. Opt. Soc. Am. 67, 370 (1977). [CrossRef]
  7. R. Cubalchini, J. Opt. Soc. Am. 69, 972 (1979). [CrossRef]
  8. V. P. Aksenov, Yu. N. Isaev, Opt. Lett. 17, 1180 (1992). [CrossRef] [PubMed]
  9. J. D. Logan, Applied Mathematics: A Contemporary Approach (Wiley, New York, 1987), Chap. 8, p. 534.
  10. D. Malacara, ed., Optical Shop Testing (Wiley Inter-science, New York, 1978), App. 2, p. 490.
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 9, p. 465.
  12. S. S. Kuo, Computer Applications of Numerical Methods (Addison-Wesley, Reading, Mass., 1972), Chap. 12, pp. 299–304.
  13. N. Bakhvalov, Métodos Numéricos (Paraninfo, Madrid, 1980), Chap. 3, pp. 135–136.
  14. J. Y. Wang, D. E. Silva, Appl. Opt. 19, 1510 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited