OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 21, Iss. 8 — Apr. 15, 1996
  • pp: 552–554

Stable chirped black solitary waves in dispersive media with intensity-dependent gain and loss

Yijiang Chen  »View Author Affiliations

Optics Letters, Vol. 21, Issue 8, pp. 552-554 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the stationary propagation of a black solitary wave in a fiber laser or in a fiber transmission system with periodically distributed amplifiers and saturable absorbers that is governed by the Ginzburg–Landau equation. An analytical solution of the chirped black solitary wave to the Ginzburg–Landau equation that includes the nonlinear saturation effect is obtained for what we believe to be the first time. The stability analyses reveal that the stationary propagation of the chirped black solitary wave can be stable when the saturation effect of nonlinear gain or loss is taken into account, whereas the chirped black solitary-wave solution of the Ginzburg–Landau equation that does not include the nonlinear saturation of gain or loss is found to be unstable. The criterion for the stable or unstable propagation of the chirped black solitary wave in the presence of the nonlinear gain or loss saturation is presented. Also, it is shown that two identical chirped black solitary waves launched in parallel will attract each other and may develop into a bound state of two parallel chirped black solitary waves. This is in contrast to the behavior of conventional black solitons of an unperturbed system, in which the two black solitons launched in parallel repel each other and distance themselves during propagation.

© 1996 Optical Society of America

Original Manuscript: August 18, 1995
Published: April 15, 1996

Yijiang Chen, "Stable chirped black solitary waves in dispersive media with intensity-dependent gain and loss," Opt. Lett. 21, 552-554 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142, 171 (1973). [CrossRef]
  2. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991). [CrossRef]
  3. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993). [CrossRef]
  4. Y. Kodama, M. Romagnoli, S. Wabnitz, Electron. Lett. 28, 1981 (1992).
  5. A. Hasegawa, Y. Kodama, Phys. Rev. Lett. 66, 161 (1991). [CrossRef] [PubMed]
  6. Y. Chen, Electron. Lett. 27, 1985 (1991). [CrossRef]
  7. Y. Chen, J. Atai, Opt. Lett. 16, 1933 (1991).
  8. C. R. Menyuk, J. Opt. Soc. Am. B 10, 1585 (1993). [CrossRef]
  9. W. Zhao, E. Bourkoff, Opt. Lett. 14, 703 (1989). [CrossRef] [PubMed]
  10. J. D. Moores, Opt. Commun. 96, 65 (1993). [CrossRef]
  11. N. R. Pereira, L. Stenflo, Phys. Fluids 20, 1733 (1977). [CrossRef]
  12. C. J. Chen, P. K. A. Wai, C. R. Menyuk, Opt. Lett. 19, 198 (1994). [CrossRef] [PubMed]
  13. C. Pare, L. Gagnon, P. A. Belanger, Opt. Commun. 74, 228 (1989). [CrossRef]
  14. V. V. Afanasjev, Opt. Lett. 20, 704 (1995). [CrossRef] [PubMed]
  15. V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 37, 823 (1973).
  16. P. A. Belanger, L. Gagnon, C. Pare, Opt. Lett. 14, 943 (1989). [CrossRef] [PubMed]
  17. Y. Chen, Phys. Rev. A 45, 6922 (1922). [CrossRef]
  18. L. D. Faddev, L. A. Takhtajan, Hamiltonaian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987); p. 19I. M. Uzunov, V. S. Gerdjikov, Phys. Rev. E. 47, 1589 (1993)Y. S. Kivshar, X. Yang, Phys. Rev. E 49, 1657 (1994)H. Ikeda, M. Matsumoto, A. Hasegawa, Opt. Lett. 20, 1113 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited