OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 22, Iss. 18 — Sep. 15, 1997
  • pp: 1379–1381

Self-focusing in the presence of small time dispersion and nonparaxiality

G. Fibich and G. C. Papanicolaou  »View Author Affiliations

Optics Letters, Vol. 22, Issue 18, pp. 1379-1381 (1997)

View Full Text Article

Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the combined effect of small time dispersion and nonparaxiality on self-focusing and its ability to arrest the blowup of laser pulses by deriving reduced equations that depend on only the propagation distance and time. We calculate the pulse duration for which time dispersion dominates over nonparaxiality, or vice versa. We identify additional terms (shock term, group-velocity nonparaxiality, etc.)that should be retained when time dispersion and nonparaxiality are of comparable magnitude. These additional terms lead to temporal asymmetry, and in the visible spectrum they can dominate over both time dispersion and nonparaxiality.

© 1997 Optical Society of America

G. Fibich and G. C. Papanicolaou, "Self-focusing in the presence of small time dispersion and nonparaxiality," Opt. Lett. 22, 1379-1381 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Feit J. Fleck, J. Opt. Soc. Am. B 5, 633 (1988) ; J. Soto-Crespo and N. Akhmediev, Opt. Commun. 101, 223 (1993) ; N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, Opt. Lett. 18, 411 (1993).
  2. G. Fibich, Phys. Rev. Lett. 76, 4356 (1996).
  3. N. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovsky, JETP Lett. 44, 13 (1986); J. E. Rothenberg, Opt. Lett. 17, 583 (1992); P. Chernev and V. Petrov, Opt. Lett.OPLEDP 17, 172 (1992) ; G. Luther, A. Newell, J. Moloney, Phys. D 74, 59 (1994).
  4. G. Fibich, V. Malkin, and G. Papanicolaou, Phys. Rev. A 52, 4218 (1995).
  5. J. Ranka, R. Schirmer, and A. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).
  6. S. Chi and Q. Guo, Opt. Lett. 20, 1598 (1995).
  7. N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981).
  8. J. Rothenberg, Opt. Lett. 17, 1340 (1992).
  9. M. Querry, D. Wieliczka, and D. Segelstein, in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.
  10. I. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
  11. Z. Bor and B. Rácz, Appl. Opt. 24, 3440 (1985).
  12. G. Fibich, “Self-focusing in the nonlinear Schrödinger equation for ultrashort laser–tissue interactions,” Ph.D. dissertation (Courant Institute, New York University, New York, New York, 1994).
  13. G. Fibich G. Papanicolaou, Computational and Applied Mathematics report 97–21 (University of California, Los Angeles, Los Angeles, Calif., 1997).
  14. G. Fibich, Opt. Lett. 21, 1735 (1996).
  15. D. Anderson and M. Lisak, Opt. Lett. 7, 394 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited