OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 22, Iss. 18 — Sep. 15, 1997
  • pp: 1418–1420

Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy

Dahv A. V. Kliner, Jeffrey P. Koplow, and Lew Goldberg  »View Author Affiliations


Optics Letters, Vol. 22, Issue 18, pp. 1418-1420 (1997)
http://dx.doi.org/10.1364/OL.22.001418


View Full Text Article

Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm→215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated.

© 1997 Optical Society of America

Citation
Dahv A. V. Kliner, Jeffrey P. Koplow, and Lew Goldberg, "Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy," Opt. Lett. 22, 1418-1420 (1997)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-18-1418


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Fehér and P. A. Martin, Spectrochim. Acta A 51, 1579 (1995).
  2. For example, the integral cross section of NO at 296 K is 1.3×10-19cm-1 /(molcm-2) at ~6.2mm (Ref.) and 1.8×10-17cm-1 /(molcm-2) at ~215 nm (Ref.); the corresponding low-pressure (Doppler-broadened) peak absorption cross sections are 3.0×10-17cm2/ mol and 1.7×10-16cm2/ mol, respectively.
  3. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
  4. A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 12, 627 (1972) ; W. G. Mallard, J. H. Miller, and K. C. Smyth, J. Chem. Phys. 76, 3483 (1982) ; J. R. Reisel, C. D. Carter, and N. M. Laurendeau, J. Quant. Spectrosc. Radiat. Transfer 47, 43 (1992) ; R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
  5. C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
  6. L. Goldberg and D. A. V. Kliner, Opt. Lett. 20, 1145 (1995) ; 1640 (1995).
  7. L. Goldberg, M. R. Surette, and D. Mehuys, Appl. Phys. Lett. 62, 2304 (1993).
  8. J.-C. Baumert, P. Günter, and M. Melchior, Opt. Commun. 48, 215 (1983).
  9. R. P. Wayne, Chemistry of Atmospheres (Oxford University, New York, 1991).
  10. D. E. Freeman, K. Yoshino, J. R. Esmond, and W. H. Parkinson, Planet. Space Sci. 32, 1125 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited