Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Middle-atmospheric Doppler lidar using an iodine-vapor edge filter

Not Accessible

Your library or personal account may give you access

Abstract

We present both modeled capabilities of and experimental data from a Doppler lidar for the stratosphere and the lower mesosphere that uses the edge of a molecular iodine filter in a differential measurement to provide frequency discrimination. Modeled results show a capability for wind measurements to an altitude of 55 km with 1.5-km resolution in 30 min. Experimentally, wind-vector components from 18 to 45 km are measured every 20 min. The molecular-vapor filter provides great advantages with regard to system stability, operation in less-than-optimum weather conditions, and simplicity of data analysis.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter

Zhi-Shen Liu, Dong Wu, Jin-Tao Liu, Kai-Lin Zhang, Wei-Biao Chen, Xiao-Quan Song, Johnathan W. Hair, and Chiao-Yao She
Appl. Opt. 41(33) 7079-7086 (2002)

Wind measurements with 355-nm molecular Doppler lidar

Bruce M. Gentry, Huailin Chen, and Steven X. Li
Opt. Lett. 25(17) 1231-1233 (2000)

Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.