OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 22, Iss. 6 — Mar. 15, 1997
  • pp: 384–386

Tunable optical microwave source using spatially resolved laser eigenstates

M. Brunel, F. Bretenaker, and A. Le Floch  »View Author Affiliations


Optics Letters, Vol. 22, Issue 6, pp. 384-386 (1997)
http://dx.doi.org/10.1364/OL.22.000384


View Full Text Article

Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

© 1997 Optical Society of America

Citation
M. Brunel, F. Bretenaker, and A. Le Floch, "Tunable optical microwave source using spatially resolved laser eigenstates," Opt. Lett. 22, 384-386 (1997)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-6-384


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
  2. J. O’Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
  3. D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
  4. K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
  5. R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
  6. C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
  7. X. S. Yao and L. Maleki, Opt. Lett. 21, 483 (1996).
  8. B. Zhou, T. J. Kane, G. Dixon, and R. L. Byer, Opt. Lett. 10, 62 (1985).
  9. F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
  10. V. Evtuhov and A. E. Siegman, Appl. Opt. 4, 142 (1965); A. E. Siegman, Opt. Commun. 24, 365 (1978).
  11. A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).
  12. A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
  13. P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).
  14. Here we have ommited the possible birefringence of the YAG rod, since it would only add a constant term in the frequency difference.
  15. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
  16. P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).
  17. K. Wallmeroth, Opt. Lett. 15, 903 (1990).
  18. In this case, a crystal separating the pump source can also be introduced into the cavity. The laser then behaves as an ordinary one-axis laser, with the beams kept degenerate on the mirrors.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited