Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Femtosecond Kerr-lens autocorrelation

Not Accessible

Your library or personal account may give you access

Abstract

An autocorrelation measurement of femtosecond laser pulse duration using the Kerr-lens mechanism is demonstrated. This technique can also be used as a sensitive and absolutely calibratable method for measuring ultrafast optical nonlinearities. A method that uses an electronic spectral-filtering scheme is proposed for determining the frequency chirp of pulses by interferometric autocorrelation.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Real-time chirp diagnostic for ultrashort laser pulses

Toshiyuki Hirayama and Mansoor Sheik-Bahae
Opt. Lett. 27(10) 860-862 (2002)

Femtosecond carrier-induced screening of dc electric-field-induced second-harmonic generation at the Si(001)–SiO2 interface

J. I. Dadap, P. T. Wilson, M. H. Anderson, M. C. Downer, and M. ter Beek
Opt. Lett. 22(12) 901-903 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.