OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 22, Iss. 6 — Mar. 15, 1997
  • pp: 405–407

Electromagnetic bubble generation by half-cycle pulses

A. E. Kaplan, S. F. Straub, and P. L. Shkolnikov  »View Author Affiliations

Optics Letters, Vol. 22, Issue 6, pp. 405-407 (1997)

View Full Text Article

Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic (EM) bubbles (EMB’s), unipolar, super-short, and intense nonoscillating solitary pulses of EM radiation, can be generated in a gas of nonlinear atoms by available half-cycle pulses (HCP’s). We investigate how EMB’s characteristics (amplitude, length, formation distance, and total number) are controlled by the amplitude and length of originating HCP’s. We also predict shocklike wave fronts in the multibubble regime.

© 1997 Optical Society of America

A. E. Kaplan, S. F. Straub, and P. L. Shkolnikov, "Electromagnetic bubble generation by half-cycle pulses," Opt. Lett. 22, 405-407 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. R. Smith, D. H. Auston, and M. S. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
  2. D. Grischkowsky, S. Keidin, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990) ; R. A. Cheville and D. Grischkowsky, Opt. Lett. 20, 1646 (1995).
  3. J. H. Glownia, J. A. Misewich, and P. P. Sorokin, J. Chem. Phys. 92, 3335 (1990).
  4. B. B. Hu and M. S. Nuss, Opt. Lett. 20, 1716 (1995).
  5. R. R. Jones, D. You, and P. H. Bucksbaum, Phys. Rev. Lett. 70, 1236 (1993); C. O. Reinhold, M. Melles, H. Shao, and J. Burgdorfer, J. Phys. B 26, L659 (1993).
  6. A. E. Kaplan, Phys. Rev. Lett. 73, 1243 (1994); A. E. Kaplan and P. L. Shkolnikov, J. Opt. Soc. Am. B 13, 412 (1996).
  7. A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. Lett. 75, 2316 (1995) ; also in Int. J. Non-Linear Opt. Phys. Mater. 4, 831 (1995).
  8. R. K. Bullough and F. Ahmad, Phys. Rev. Lett. 27, 330 (1971) ; J. E. Eilbeck, J. D. Gibbon, P. J. Caudrey, and R. K. Bullough, J. Phys. A 6, 1337 (1973); E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Sov. Phys. JETP 73, 423 (1991).
  9. Propagation is more sensitive to the precision of constitutive equations than to that of Maxwell equations., The former, however, can also be simplified within certain limits. For slow and weak fields (t-10, f0<<1), the Maxwell + constitutive equations can be reduced to a modified Kordeweg–De Vries equation for both the quantum and classical cases: 6f/6z-Anlf2 6f/6t-63f/6t3=0, where for a TLS, Anl=3/2. In the opposite limit of a very strong and fast field, the Maxwell–Bloch equations can be reduced to a sine Gordon equation 62fR/6z6 t1=sinfR for a Rabi phase fR≡-∞ t1fdt(t1=t-z). Both of these equations are fully integrable and have single solitons of exactly the same profile as an EMB.
  10. A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. A 49, 1275 (1994).
  11. P. H. Bucksbaum, Department of Physics, University of Michigan, Ann Arbor, Mich., 48109, personal communication, 1996.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited