OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 12 — Jun. 15, 1998
  • pp: 918–920

Reflected fourth-harmonic radiation from a centrosymmetric crystal

Y.-S. Lee and M. C. Downer  »View Author Affiliations

Optics Letters, Vol. 23, Issue 12, pp. 918-920 (1998)

View Full Text Article

Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present measurements of fourth-harmonic generation in reflection from the interface between two centrosymmetric media [Si(001)– SiO2] , using femtosecond pulses well below damage threshold. Analyses of signal amplitudes, rotational anisotropy, and sensitivity to surface roughening reveal that the surface dipole fourth-harmonic contribution dominates the bulk quadrupole contribution much more strongly than for second-harmonic generation.

© 1998 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Y.-S. Lee and M. C. Downer, "Reflected fourth-harmonic radiation from a centrosymmetric crystal," Opt. Lett. 23, 918-920 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y.-S. Lee, M. H. Anderson, and M. C. Downer, Opt. Lett. 22, 973 (1997).
  2. C. Yamada and T. Kimura, Phys. Rev. B 49, 14, 372 (1994).
  3. O. A. Aktsipetrov, I. M. Baranova, and Yu. A Il’inskiǐ, Sov. Phys. JETP 64, 167 (1986).
  4. W. H. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51, 1983 (1983).
  5. The FH, TH, and SH count rates reported here have been corrected for losses totaling a factor of 30±5 in the filters and optics between sample and detector and for the quantum efficiency of the detector. In addition, fundamental intensity Iw was higher by a factor of 3.4±0.5 than for the GaAs data in Ref. 1. Thus the uncorrected raw count rates in Ref. 1 should be multiplied by ~4000 (factor-of-2 uncertainty) for direct comparison with the present results.
  6. Y.-S. Lee, M. H. Anderson, and M. C. Downer, “Symmetry analysis of optical fourth-harmonic generation at crystalline surfaces,” submitted to Phys. Rev. B; Y.-S. Lee, “Optical fourth-harmonic generation at crystalline surfaces,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1997).
  7. J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987).
  8. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
  9. M. Miyashita, T. Tusga, K. Makihara, and T. Ohmi, J. Electrochem. Soc. 139, 2133 (1992).
  10. K. Sawara, T. Yasaka, S. Miyazaki, and M. Hirose, Jpn. J. Appl. Phys. 31, L931 (1992).
  11. D. Gräf, M. Grundner, and R. Schulz, J. Appl. Phys. 68, 5155 (1990); M. Niwano, J. Kageyama, K. Kinashi, J. Sawahata, and N. Miyamoto, Surf. Sci. 301, L245 (1994) ; J. Westermann, H. Nienhaus, and W. Mönch, Surf. Sci.SSSPEN 311, 101 (1994).
  12. S. T. Cundiff, W. H. Knox, F. H. Baumann, K. W. Evans-Lutterodt, M.-T. Tang, M. L. Green, and H. M. van Driel, Appl. Phys. Lett. 70, 1414 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited